
1

AI Research in Natural Language Generation

Prof. David D. McDonald, Principal Investigator 1

University of Massachusetts at Amherst

Final Report

Reporting work done for the Rome Air Development Center under the Post-Doctoral

Program: subcontract F302602-81-C-0169 to Syracuse University, task I-7-4398;

subcontract F30602-81-C-0193, task I-7-4410 to the Southeastern Center for Electrical

Engineering Education (SCEEE).

RADC Task Engineer: Capt. R. L. Russel, Jr. RADC/IRDT

Time period: nominally June 15, 1987 to September 30, 1987, with a no-cost extension

(Syracuse only) through February 29, 1988.

Summary

Paraphrasing the task description that authorized this effort, the objective was to

extend RADC capabilities in natural language generation by studying the interfacing of

the natural language generation linguistic realization component Mumble-86 to the expert

mission planning system KRS.

The primary element of this effort was the development of an in-depth understanding

of the technical issues involved in such an interface. This element was very successful: a

general interface framework was designed and implemented based on the experience with

KRS (see ref. 2), and several RADC personnel were thoroughly initiated in the design

principles as well as general issues in the use of Mumble-86. A secondary element, the

1 Present position and address: Senior Scientist, MAD Intelligent Systems, Text Group. 55 Wheeler St.,

Cambridge, MA 02138. Phone: (617) 492-1982, 661-4514.

2

actual installation of a joint Mumble/KRS system, received relatively little emphasis due

to the delayed initiation of the funding for the contract.

3

Technical Progress Achieved

1. Background

Effective presentation of data and explanation of reasoning is a crucial element of

any knowledge-based system's performance if it is to be accepted by its intended user

community. This communication is most likely to succeed if it is done in the medium

that its users are already accustomed to, which for a majority of situations is a natural

language, e.g. English.2 Computers have been presenting English messages to their users

practically since they were first used, but almost without exception these messages have

been "canned", i.e. complete, predefined, stored strings of characters that were directly

embedded in the code of the programs and printed when the corresponding subroutine

was called.

While canned text is adequate and even preferable for some applications (e.g. error

messages), by its nature it cannot be adapted to new situations except by painstaking

programmer effort. In addition, a design based on canned text is easily overwhelmed by

the demands posed by today's knowledge-based systems, which can have dozens of

completely different communications needs and are continually constructing new objects

and events whose descriptions cannot be canned ahead of time. For these reasons,

knowledge-based systems require dynamic, online text generation if they are to have the

flexibility and naturalness that their users need.

Over the course of the past decade, natural language generation systems, typically

running in experimental settings independent of any practical systems, have achieved a

significant competence in the low-level, linguistic aspects of text generation.

Furthermore, enough forays have been made into the little understood high-level aspects:

coherence, style, perspective, planning, etc., that we are able to carefully define the issues

and the degrees of difficulty involved in their research and development. The salient

problem now is to determine the requirements and priorities on existing generation

systems and their near-term extensions so that they be used with actual, independently

developed knowledge-based systems, while at the same time looking forward towards the

long-term problems that will cap the level of performance our near and mid -term

projects can achieve.

2 For best effect, expert system presentations should involve all available and customary media, for

example maps, graphs, tables, spoken as well as printed output, etc. Our effort, however, was concerned

strictly with printed presentations (i.e. displayed on a VDU) of dynamically generated English text.

4

2. Specific focus

The goal of this effort was to learn what is required in order to extend the natural

language generation and explanation capabilities of a conventional, knowledge-based

expert system by interfacing it to a highly capable independent language generation

component. The system chosen for the work was the "Knowledge Replaying System"

(KRS) previously developed for RADC by the Mitre Corporation (Dawson et al. 1987).

The generation component was Mumble-86, which was contemporaneously being

completed at the University of Massachusetts at Amherst under funding from DARPA.

The KRS system, as installed at RADC when this effort commenced, had a minimal

generation system already in place. This system used the so-called "direct replacement"

algorithm (see McDonald 1986) along with an ad-hoc notation for associating strings of

words with units in KRS's conceptual model. Though difficult to extend, that system was

capable of producing texts like the one below. (The KRS data structure that it was

generated from--a rule--is given just below it.) The purpose of the text was to facilitate

editing the rule on-line.

text produced by KRS

By TARGET-AIRCRAFT-2: There is a severe conflict between the target and

the aircraft since:

 1: DATA: The target of OCA1002 is BE50318

 2: DATA: Part of BE50318 is BE50318-SEARCH-RADAR

 3: INHERITANCE: BE50318-SEARCH-RADAR is active

 4: DATA: The aircraft of OCA1002 is F-111E and F-111E is not a F-4G.

5

the rule that was the source for the text

(constraint-state
 ((tbelow ((aircraft (tgtacp1)) (target (tgtacp1))))
 (tnewhere nil)
 (toldabove ((aircraft (tgtacp1)) (target (tgtacp1))))
 (tnewhere nil)
 ...
 (((target-aircraft-2
 (data (target OCA1002 BE50318))
 (data (powa BE50318 BE50318-SEARCH-RADAR))
 (inheritance (is-a BE50318-SEARCH-RADAR
 ELECTRONICS))
 (data (aircraft OCA1002 F-511E)
 ((NOTEQ F-111E 'F-4G)))
 ...)

We took this text and its corresponding rule, and the few others like it in KRS, as our

starting point. They are representative of the state of the art when a sophisticated

generation component is not used. In the course of our work we identified the problems

such texts exemplify, and determined near, middle, and long-term recommendations for

how these problems can be rectified.

3. Problems identified

As a text, this example and the others like it have two kinds of problems. The most

obvious is that they are unnatural -- a person giving the same information would speak

with markedly greater fluency. The second, more subtle, problem is that they are also

potentially misleading.

Fluency, per se, is fairly easy to improve once one can take advantage of a

generation component with a sophisticated model of English grammar. The text of the

example was unnatural because it consisted solely of short, uniformly constructed, single

clause sentences. Any generator with a model of clause combining principles and a

syntactic description of each of the individual clauses (which a direct replacement

generator almost never has) can combine the short sentences into a long one, or can find

alternative realizations for some of the information, say as adjectives or descriptive

references, thereby eliminating some clauses altogether.

The rub comes when the generator tries to decide just which of the dozens of

combination possibilities it should use, and this is where the problem of being potentially

misleading comes in. We need to appreciate that people are not accustomed to being

addressed by computers. Unless they are regular computer users, they will assume that

the machine intended to communicate the same information that a person would had he

uttered the same remark. This information includes facts about the relative importance of

6

the remark's different facets and whether they are new or something the user is presumed

to already know.3 Whenever an audience reads a text--more so when they hear one,

they ascribe this kind of contextual information to the text whether it was intended or not.

Consequently, the more important the propositional information that a computer system

is trying to covey, the more important it is that this sort of contextual information is

appreciated and factored into the text generation process.

We can illustrate this by looking at some of the different ways one can more fluently

express the first part of the information in the example rule. For example:

The target has an active search radar.

This version couches the information as a property of the target. An alternative could be

to phrase it in terms of the status of the radar unit; this would be especially appropriate if

the user already knew that the target had a radar protecting it.

The target's search radar is active.

A fluent rendering of the entire rule might then be

The target's search radar is active, but the mission aircraft do not

include any F4Gs.

An alternative rendering, with the same information but the opposite focus,4 would be

The mission aircraft do not include any F4Gs, but the target has

an active search radar.

3 These are just two aspects of the sort of "non-propositional" information that people communicate when

they speak which happen to be relevant to this example; there are many others.

4 We understand from the people we worked with at RADC that the standard intent of the rule is for the

person planning the mission to change what aircraft are used. This fits the focus of the first version of

the text: the "given" information is the choice of target, and the rule points out a consequence of that

choice that the person hadn't anticipated in choosing the aircraft to be used. The given/new organization

of the text matches the if/then pattern of the rule. In a different situation, however, the same rule could

be driven in the opposite direction: Suppose that F4Gs are simply not available for the mission, that KRS

knows this, and that its intent is to suggest that the person select an alternative target that is not protected

by a radar-guided anti-aircraft battery. In this case the second version of the text has the correct

structure.

7

3.1 Implications of these problems

These sorts of remarks are well within the state of the art of today's generation

components. Given only the level of experience that several RADC/COES personnel

acquired while at UMass for a week during the summer of 1987, a "specialist-based"

interface to Mumble-86 could be developed for the rule model specifically used by KRS

in a small amount of time (see "short term recommendations" below). While this would

be an improvement in the naturalness of KRS's output, it would be a less than satisfactory

solution in two respects:

(1) It would be a special-case solution. To replicate the effort for another system

we would have to start over and write comparable specialists and contextual

heuristics essentially from scratch.5 This problem is addressed in the middle-

term recommendations.

(2) However good one was able to make the text per se, the information conveyed

by a rendering of the literal information in the example rule is an inadequate

explanation of the problem for an inexperienced user, and might well mislead an

experienced one.6 This problem stems from a simple lack of the relevant

5 In a case such as this there are three kinds of information that must be supplied. One is the mapping

from the primitive units of the conceptual representation to suitable English phrases, e.g. the term POWA

("part of") is linked to part of or has. The second is the procedures and rationales for combining the units

into larger phrases, e.g. the target's radar or the target has a radar. The third, and the most difficult to

come by, is the criteria by which alternatives in mapping or combination are to be adjudicated. This

involves linguistic analysis to determine what rhetorical and connotative effects each of the alternatives

can have, and also a study of the specific task and the particulars of the system's conceptual model and

intentional states in order to determine what conditions in the system should direct the use and choice of

these effects.

6 The F4G aircraft carries special munitions and equipment designed specifically to neutralize the radar

facilities of hostile anti-aircraft batteries. This explains their significance to a mission against a target,

like the one in the example, that is defended by radar-directed anti-aircraft platforms. The cryptic

designation of the search radar in the KRS rule as "electronics" was used by the rule writer to signify that

it was the kind of object that emitted radiation that could be tracked back by the F4G's special munitions.

This kind of explanatory information is not given in the rule, and consequently cannot possibly be

passed on for the benefit of an inexperienced user of KRS who does not already know about the special

properties of F4G aircraft. By the same token, to an experienced user, the information that the search

radar at the target "is active" is superfluous: every radar has the kinds of properties that make it

susceptible to an F4G. Since a person will always presume that the information they are being told must

serve some purpose, the experienced user is likely to look for some interpretation of "active" that would

make its information significant, perhaps that the anti-aircraft batteries in question were mobile and that

intelligence reports had indicated that they were recently in the area of the target; the actual KRS rule,

however, implies nothing of the kind.

8

information in KRS's conceptual model, and is addressed in the long-term

recommendations.

4. Recommendations

Based on the work done in the course of this effort, we can make specific and

generic recommendations to guide future R&D efforts in natural language generation.

They are grouped into short, medium, and long -term, i.e. roughly estimated as through

calendar years 1991, 1994, and 1999 respectively.

The criteria determining how much real calendar time these periods will actually

correspond to are firstly how much effort is actually put into generation by coordinated

teams within the intellectual community (if, for example, the Darpa community shifts its

natural language resources predominantly to speech research, the time-frames will

lengthen). Secondly, how much of the effort is devoted to open-ended research versus

engineering specific solutions on the basis of the existing technology (the more research,

the shorter the time-frames). And thirdly how much academic research on generator

occurs (given the luxury of Ph.D. research, new graduates will in all likelihood have

tackled problems that are years away for externally-funded research teams). Given the

enormous variation possible in how these factors actually work out, the recommendations

should be understood as a sequence of staged phases rather than a rigid set of time-

frames.

4.1 Short-term recommendations

A generation system can be said to consist of three parts: (1) A linguistic

component, with a knowledge of grammar and of how texts may be formed and

produced; (2) a planning component, making decisions about what information should

be included in the text, how it should be organized, and the perspective, register, and

style with which it should be expressed; and (3) an underlying applications program of

some sort, the source of the goals the other components are to achieve and of the

conceptual model of the application's knowledge and state that the other components

work from.

In any practical generation project, the underlying program -- something like KRS --

is usually a given. The linguistic component -- say Mumble-86 -- can be taken off the

shelf with perhaps only minor extensions to its grammar to handle new constructions.

The planning component, however, is presently going to be specific to each pair of

9

components: planners for new pairs will largely have to be built from scratch.7 This is

because the likelihood of being able to use an "off the shelf" text planning program

developed elsewhere for applications systems or realization components even slightly

different than one's own is extremely low; sometimes even to adapt its specific

architectural principles may be difficult. As a consequence, any new group will

invariably be developing the bulk of the text planner on its own. This is likely to be the

case for the short term, i.e. the next two to three years, assuming the research community

follows its present trends.

The question is what research path will most quickly turn this situation around.8

Here we see five guidelines that would do well to be adopted by new projects initiated

during this period.

-- Be circumspect in the use of schemas (in the sense of McKeown 1985). A

schema imposes an externally derived organization on a text (usually of

paragraph length), an organization whose particulars are not motivated by the

underlying applications program. Their use is a crutch that gives the impression

of greater understanding of what it is saying than the application actually has---a

serious problem once applications are used interactively because of the

likelihood that people will read in an unintended emphasis and perspective as

described above. A safer tack is to stick with some variation on direct

7 Text planning is in its infancy as a research problem. (For an overview of the issues in text planning, one

should look at the proceedings of the recent workshop on the subject held at the AAAI meeting in August

of 1988 and available from the AAAI office.) By contrast, the linguistic issues in generation, because

they have received more attention and were able to draw on work on grammars done in other fields, can

now be approached with considerable sophistication. Drawing on the general principles and the wealth

of experience that have been gained from earlier linguistic realization components, a group newly into

generation could build another such component from scratch with a high probability of success (though

their effort would be better spent elsewhere). Text planners are a much trickier enterprise.

8 The emphasis here is deliberately on research rather than development. Development only makes sense

when the theoretical and technical underpinnings have been established by prior research and the

intended applications demand the skill level that the research has achieved. Neither is the case today.

Given what is still a very low level of sophistication in the modeling and interpersonal goal-setting

capabilities of today's application computer programs, any effort to generate texts from the sources they

can realistically provide will be best served by direct replacement generation techniques and canned

format statements--getting the programs to motivate anything more sophisticated would be squeezing

water from a stone. By the same token, if one were working from an experimental application that might

well be able to supply the motivations, the generation technology available in the crucial area of text

planning, as noted, is too immature to be the basis of large-scale, generalized development efforts.

10

replacement as the basis of text structure above the clause level, since this will

force the structure to at least indirectly reflect the actual data structures of the

application and thus be accessible to any discourse-tracking facilities that the

application has (see ongoing work by Beverly Woolf's tutoring group at

UMass). In the near term, the inevitable monotony and occasional

awkwardness in the large scale structure of the text that this leads to will remind

users of the application's limitations.

-- Simplify the development effort by adopting an architecture based on

"specialists", hand tailored treatments for each class of object or event the

application needs to realize. This is the design used by the programs thusfar

most successful at varying their descriptions to fit the circumstances (see

especially Hovy 1988). It has the obvious weakness of lack of generality---

quite acceptable in the near term---but has the advantage of freeing the

experimenter to look for the rationales for generation decisions wherever they

might be found, while not requiring these rationales to be applicable across the

board. At this point what the field needs is experiments on as broad a front as

possible, and the choice of architecture should support this.

-- Presume that all of the rules and code that are developed will be thrown away

when the follow-on project is begun. The goal of work during this period is to

explore the breadth of problems at issue in text planning. Exploratory work

yields prototypes, not polished systems, and any attempt at polish will

invariably come at the expense of the breath of the issues examined. The result

would be a brittle system, with a restricted architecture that can not

accommodate the extensions necessary as further issues become understood.

-- Choose the applications domain with great care. In a research context, the

purpose of the application is to challenge the research while not presenting

problems that are too great to be surmounted with a year's work. Adopting a

domain simply because there is an available expert system is a mistake: the

application's domain model and reasoning must be rich enough to support the

judgements the generator will be making. The application's authors must be on

ready call to answer questions about the intent behind particular primitives and

expressions. The very best situation is when the application is still under

development and changes can be made in response to the generation researcher's

needs.

-- Do not have the goal of creating a "text planning formalism". Without tested

general principles to guide one's work, and with only a very few initial

11

experimental systems to take as examples, it is premature to adopt any single

discipline on how text planning knowledge is to be encoded analogous to the

rigorously defined grammar formalisms now being used in linguistic realization

components.

4.2 Medium-term recommendation

By the middle term, there should be a well-established inventory of problems to be

solved if text planning is to be done to human standards. There should also be a

significant body of experience in how these problems can be approached, though it is

unlikely to be consistent when taken as a whole. At this point we should be able to

attempt general theories of text planning that address coherent subsets of the problem and

could be applied across the board to any applications programs that meet certain minimal

standards.

In developing any general theory, it is crucial to make a careful choice of where to

draw the line between what will fall within the bounds of the theory and what will be

outside it and thus potentially dealt with as a special case. This applies to the reference

knowledge to be used as well as to processing and control. Two methodological

recommendations are in order for any medium term effort:

(1) That the line be drawn at the boundary of the text planner and the underlying

application (i.e. all applications should be able to use the same text planning

machinery).

(2) Furthermore, that the generator should support its own, complete, application-

independent semantic model of the world.9 The interface from the application

to the generator would then consist of a mapping from the application's

knowledge base to this model, plus an indication of the communications goals

to be achieved.

Some aspects of the world model will always have to be supplied from within the

generator in any event: an application has no motivation to include, for instance, the fact

that the pilots that fly the strike missions are male while their targets have no sex and are

treated as neuter. Gender is nevertheless grammatically required information that must

be supplied whenever an English generator uses a pronoun, so that information must

come from the generator. This is not an isolated case. It is normal for today's

applications not to represent such things as the temporal information needed to specify

9 More precisely, the generator should support a model of how the world is characterized in natural

language by speakers of English.

12

tense and aspect, summary information that records common properties of its individuals

(All of the targets ...), or perspective data that would allow simple choices between

lexical pairs like go/come or buy/sell, to mention just a few instances that we have

explored.

Given that any typical application's output to a generator is always going to have to

be augmented, it is a small step, architecturally, to doing this in all cases. Rather than

work from the conceptual categories of the application directly, the generator views them

indirectly via their correspondences in its own model of the world. This eliminates a

perpetual problem in generation projects whereby every change in underlying conceptual

representations (some times even every change in the programmers preparing the domain

model!) forces adjustments in the internal algorithms and decision criteria of the

generator.

Overall, the goal of this methodology is to permit theories of text planning to be

developed in the way we see as most likely to yield coherent, extensible results: namely

by working backwards from the surface, observable aspects of language. A natural

language is, as the term implies, a system organized around the needs and cognitive

faculties of human beings. We have no idea what people's real systems for thought and

intention are, and thus cannot know what the only known-to-be-effective text planning

system starts from. Nevertheless, we do know where the human generation system stops

(i.e. with texts of the sort people produce), and can therefore make reasonable

assumptions about where a text planner that we would develop should stop given a well-

motivated design for the realization component that it uses.

The point of developing a complete, application-independent semantic world model

within the generator/text-planner is to take this methodology of working backwards from

known data about as far as it can logically go, i.e. to define what a text planner/generator

would start from in an ideal system. The independent model would in effect emulate

what a theory expects as the organizing semantic categories and compositional principles

of thought/language in people, i.e. its conjectures about the principles behind the

underlying representation used in the "applications programs" (so to speak) that drive the

human generation process. By basing the judgements of the generator/text planner on a

set of linguistically motivated set of categories (object types) and compositional

principles (rather than the idiosyncrasies of applications developed without language in

mind), one has the best chance of developing a coherent, comprehensive theory. Using

such a generator then becomes a matter of establishing a mapping from the world model

of the application to the independent world model within the generator, and having all of

the application's directives to the generator translated according to this metric before they

are acted upon.

13

This methodology was initiated in the "Cicero" component of our project for

explaining legal reasoning (McDonald & Pustejovsky 1987), but not followed through to

a fully working system because of the departure of personnel. Another design with

essentially identical motivations is the uniform "upper structure" employed in the

interface required by the Penman generator at ISI -- a uniform set of topmost concepts in

the highest (most abstract) layers of the taxonomic lattice that defines the underlying

application's world model; see Matthiessen 1987.

4.3 Long-term recommendation

While local, specific representational deficiencies can be accommodated by

extended modeling within the generator, we cannot escape the fact that a generator

cannot say things that its application doesn't know.10 Consequently, in the long term, the

limitations on the quality of the text that can be generated will come from the application

rather than the generator. There will be limitations for two principal reasons:

(1) missing information that the human user would deem relevant,

(2) failure to represent the context in which information appears.

The second of these is easiest to address. Application programs, because they are

not concerned with the details of communication with people and do not have to commit

their information to words, can and possibly should remain ignorant of the subtleties of

perspective and connotational that pervade human communication. But they must

provide the generator with the information it needs to cope with distinctions based on

these subtleties, even if they have no need to represent it explicitly themselves.

To take a simple example, commercial transactions involving money are described

by people in terms like buy or sell, the choice depending--in a not well understood way--

on the perspective from which the transaction is being reported. However, very few

10 At this juncture it is worth pointing to a generation technique reduced to practice at APEX systems

(Cambridge, Mass.) by Bill Woods, which is an excellent way to allow a system to "generate" extensive

fluent texts even when the explicit knowledge of the application is severely impoverished. What one does

is have human authors prepare full texts of paragraph or longer length as appropriate to the subject the

program is to talk about. The texts are then parameterized using a simple interactive interface in order to

allow amounts, dates, names, etc. to be treated as variables that are substituted for at runtime when the

parameterized text is used. If the only things to be substituted are simple NPs and names then the

technique will work strikingly well; it will fail as soon as the text to be substituted for the variables

requires a grammatical adjustment according to the textual context in which it appears, for instance

attempting to substitute an event realized as a clause. APEX used the technique to prepare customized

financial reports for the clients of its financial planning program.

14

applications would have any independent motivation for representing such transactions as

anything other than a single event (i.e. one complex data object) which lists the identity

of the buyer and seller as instantiations of its parameters.

When presented with this transaction object and told to produce a sentence from it, a

generator is forced to arbitrarily commit to one or the other perspective (buy or sell). It

doesn't have to be this way. An application only has to provide a consistent, explicit

representation of why it is interested in the transaction event just now, and for it to be

possible to probe that "something" to determine which was more significant for its

present purposes, the buyer or the seller (a notion referred to as "salience").11 If this can

be provided there is no need for the application to change its local representation (e.g. to

move to a redundant model where each of the perspectives is spelled out as a distinct

representation of the event with its own data object).

To say that the designers of an application "only" have to make certain provisions

may be to presume a great deal. There are scientific problems in asking for an explicit

representation of an item's relative salience (significance, centrality to the processing), as

there are almost no theories of what salience consists of or how it could be manifest.

The ultimately more important problem, however, is not scientific but social. What

we need is a change in the attitudes of the people in the knowledge representation

community who are preparing the applications. Applications can presently perform most

of their assigned jobs without recourse to a generator, and at the present time it is

undeniable that supporting a generator's representational needs is an additional burden

that application designers and programmers only take on altruistically or out of curiosity.

Unfortunately altruism is hard to sustain in the face of project deadlines.

Frankly, the only way to change this state of affairs is to make it worth the

programmer's while. This will not be easy: Even though it is possible to see many direct

advantages of an integrated generation facility to the designers and programmers of an

application's world model (for instance in semi-automatic documentation, easily read

reports and process traces, explanations of procedures, and the like), these are not

available today and will not be any time soon unless a concerted effort is made. In the

meantime, however, there is a methodological step that can be taken that will greatly

expedite the process and, indirectly, improve the situation with the first limitation, the

lack of information a human user would deem relevant.

11 For a discussion of what this comes to in the context of an appointment manager application, see

McDonald 1988.

15

We should set up as a long-term goal the implementation of the principle that

anything that an application can represent it should be able to say. Put another way,

this goal requires all application/generator interfaces to be prepared in such a way that

every atomic, declarative data structure in the application would be acceptable to the

generator as a text source that would lead to an English phrase expressing the information

it represented.

Achieving this requires some flexibility in the generator so that the range of data

types it is prepared to select is suitably broad, but primarily it requires diligence on the

part of the applications programmer. Every generator provides some sort of user

interface by which programmers indicate those linguistic correspondences of their data

structures that cannot be determined by rule (e.g. proper names, idioms, noun-noun

compounds, other arbitrarily organized phrases, and all the single term open-class words)

To make the principle work, the builders of the application's world model must avail

themselves of this interface every time they define a new term in their model. Obviously

the generator interface must be made friendly enough that they will not find this an

onerous thing to do. The point of this is to continually make the designers/programmers

aware of the consequences of their choices for what the generator is able to do. When the

correspondence-specifying interface between the world model and the generator's lexicon

is easy enough to use that these non-computational linguists will really use it, they will be

able to see first hand how good or bad the fit is between the information they intended

their new data structures to embody and the information actually conveyed by the texts

those data structures engender. The hope is that this experience will make it apparent to

them what they would have to do to improve the fit, and the immediate feedback will

encourage them to actually do it.

In conclusion, if one wants computer programs to be able to use natural language

with the same understanding of what they are doing as people have (thereby eliminating

any possibility of pathological misunderstandings), then there is no alternative to

coordinating the construction of the model that drives the generation with the

construction of the one that actually drives the application.

Chronology of the effort

1. Getting the contracts in place

The initial discussions that led to this effort took place in the spring and summer of

1986, and revolved around a White Paper: "Directions for Research on Natural Language

Generation". By June of 1986 a draft proposal was in place and efforts were underway

within RADC to secure funding for it.

16

In November of 1986 it was determined that the post-doctoral program was the

appropriate funding vehicle and a budget was roughed out for it based on a February 1st

start date. It was presumed that about $35,000 was available and that the overhead rate

for going through the post-doctoral program was going to yield $30.5k for direct costs.

This turned out to be incorrect, as the initial assumption that UMass overhead

requirements could be side-stepped through the use of the post-doctoral program was not

sustained. Final, accurate budgets were prepared in mid-February after the initiating

paperwork became available from the two subcontractors that RADC used to manage the

funds. The ultimate amounts that were put to direct costs were roughly $4.5k for salary

and travel by the principal investigator (SCEEE), and $16k for salary and travel by the

student research assistants (Syracuse). The reason why the disbursement was divided

across the two subcontractors was never made clear.

After February, the UMass Office of Grants and Contracts and the two

subcontractors proceeded to take a small eternity to actually process the paperwork. It

took until mid-June 1987 for the Syracuse contract to be finalized and the UMass

internal account set up, at which point the work commenced. (The SCEEE contract

required an additional two months to finalize, but travel funds were taken from the

Syracuse contract to cover P.I. travel during the interim.)

2. The work that was performed

The first work directly under the contract was a familiarization meeting at RADC by

Professor McDonald and his senior graduate student, Marie Meteer, in late June. On this

one day trip a current copy of Mumble-86 was installed on COES' Symbolics

Lispmachines; we were thoroughly briefed by Sharon Walter on the relevant parts of the

KRS rule system including hardcopies of much of the code to study back at UMass; and

we collectively made plans for the rest of the summer's work.

The first half of the month of July was spent at conferences on the West Coast.

During this time the groundwork was laid for what eventually became the "Water to

Wine" paper presented the following February at the Applied Computational Linguistics

meeting. This work was largely a reaction to the weakness and inflexibility of the KRS

rule representation as a text source. It is the primary research result of the project, and

establishes a framework for a pragmatic approach to near and middle term development

projects that must generate from conventionally designed applications programs. A copy

of the paper is included with this report.

During the second half of July, a two day tutorial was prepared presenting the

technical issues and state of the art in natural language generation, with special attention

17

to the generation projects supported by DARPA. This tutorial was presented at RADC at

the end of the month to an audience averaging about a dozen people.

In August the tables were turned: Sharon Walter spent a week at UMass getting

experience in preparing an interface to Mumble-86 with the assistance of the students in

the Mumble Development Group. (Doug White was also on campus for that week

reviewing a contract, and spent some of his time working on Mumble.)

 In September of 1988, as expected, Professor McDonald left the University of

Massachusetts, spending the rest of the grant period effectively on sabbatical. The final

month of direct contract work (September) was primarily spent finishing the

documentation technical report for Mumble-86. The other significant activity that month

was the RADC workshop on natural language processing (9/21-23) organized by Sharon

Walter, which McDonald attended. McDonald had profitable discussions with RADC

personnel Sharon Walter, Doug White, Bob Russel, and Nort Fowler, as well as with the

other invited participants.

 An important item coming out of this meeting for Professor McDonald was the fact

that there have never been evaluation standards established for research in natural

language generation---it has never even been established what it is one would measure!

This has led to discussions by McDonald and Marie Meteer (now at BBN) with Sharon

Walter urging that RADC find a way to support a special workshop chartered to develop

the technical basis for establishing generation standards.12

After Professor McDonald's departure from everyday contact with UMass, day to

day supervision of the three graduate research assistants who continued to be funded on

the Syracuse no-cost extension of the contract was turned over to Dr. Beverly Woolf,

who is herself supported by RADC/IRDT funding in a joint project with SUNY Buffalo

under the auspices of the AI Consortium. Anticipating that the three students would

eventually come under the support of that effort, we gradually shifted the emphasis of

their work in the course of the semester from support for the Mumble-86 program to

establishing the requirements for the new effort.

During the next six months McDonald made a number of colloquium presentations

based in part on research performed as part of this contract. The places and dates are

listed below.

12 A first cut at this workshop took place as part of the "Workshop on the Evaluation of Natural Language

Processing Systems" December 8,9 1988 in Wayne, PA. However the limited time available and the

mixed focus meant that the participants barely had time to scratch the surface of the problem. A

workshop specifically addressing the evaluation of generation systems is highly recommended.

18

In February Professor McDonald visited Sharon Walter and Doug White for a one-

day briefing on the work that had been done on the contract during the fall. He presented

a composite of the colloquium talks he had given on RADC-based work, including the

"Water to Wine" paper that was then presented by Marie Meteer the following week at

the meeting on Applied Natural Language Processing in Austin Texas. Also discussed

was the model developed by McDonald and Meteer for an "orchestration" component to

act within the later stages of a generation text planning system, and their model of

"semantic templates" for systematizing the procedure of preparing input realization

specifications for Mumble-86 from selected program-internal data structures. This

briefing was the last work done under the support of the contract.

3. Talks, colloquia, etc. presenting this work:

Applied Expert Systems (APEX), October 27, 1987.

University of Montreal Linguistics Dept., October 29, 1987.

ATT Bell Laboratories, December 8, 1987.

NYU Computer Science Department, December 9, 1987.

2d Conference on Applied Natural Language Processing (ACL), February 9, 1988.

University of Buffalo Computer Science Dept., March 10, 1988.

General Electric R&D Center, Schenectady NY, April 14, 1988.

4. Papers published/prepared referencing this contract:

1. Marie Meteer, David McDonald, Scott Anderson, David Forster, Linda Gay, Alison

Huettner & Penelope Sibun, Mumble-86: Design and Implementation, TR #87-87

Dept. Computer & Information Science, UMass., September 1987.

2. David McDonald & Marie Meteer (Vaughan), "From water to wine: generating

natural language texts from today's applications programs", 1988 conference on

Applied Natural Language Processing (ACL), Univ. of Texas at Austin, February 9-

12, to appear; available as TR #87-51 Dept. Computer & Information Science,

UMass., August 1987.

3. Penelope Sibun, Alison Huettner & David McDonald , "Directing the Generation of

Living Space Descriptions", COLING-88.

19

4. Marie Meteer & David McDonald, "The Orchestration Process in Text Planning for

Generation", failed submission to the ACL annual meeting; available as a manuscript

from the authors, 9pgs.

Additional references cited

Hovy, Eduard (1988) Generating Language under Pragmatic Constraints,

Lawrence Erlbaum Associates, Hillsdale, N.J.

Matthiessen, Christian (1987) "Notes on the organization of the environment of a text

generation grammar" in Kempen (ed.) Natural Language Generation, Martinus

Nijhoff, Dordrecht, The Netherlands, pp. 253-278; distributed by Kluwer

Academic, Higham Mass.

McDonald, David (1986) "Natural Language Generation", in Shapiro (ed.) The
Encyclopedia of Artificial Intelligence, John Wiley & Sons, in press, pp.642-655.

McDonald, David & James Pustejovsky "The Councelor Project at the University of

Massachusetts", Computational Linguistics 12(2), Summer 1986, Finite String

Newsletter, pp. 139-141.

McDonald, David (1988) "On the Place of Words in the Generation Process", Fourth

International Workshop on Natural Language Generation, Catalina Island (Information

Sciences Institute/USC), July 18-21, 1988; publication of the proceedings as a book is

anticipated.

McKeown, Kathleen (1985) Text generation: Using discourse strategies and focus
constraints to generate natural language text, Cambridge University Press,

Cambridge, England.

