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The problem that inspired this volume is how to develop intelligent computer
systems that are “text-based”—systems that acquire their knowledge by assimilating
massive amounts of ordinary natural language text, rather than having to be spoon-fed
rules handcrafted by knowledge engineers.2  A mature text-based systems would keep
up with current events by simply reading the newspaper like we do.  Conceivably it
might even learn new fields by reading the text books.  

The sheer number of things to be learned, and the pace with which they change,
requires us to try to develop systems that can assimilate the information in a text with
only a minimum of human oversight.  The ready availability of candidate texts in elec-
tronic form: encyclopedias, newswires, daily papers, magazines, printer’s tapes, etc.
gives us every incentive to try.

An example may help to make it clear just what this enterprise is.  Below is an article
from the Wall Street Journal, shown exactly as it appears when downloaded elec-
tronically from the Dow Jones News Retrieval service.  

                                                
1  This paper is an expanded and revised version of a paper originally presented at the AAAI Spring

Symposium on “Text-based Intelligent systems”, March 1990 at Stanford University.
2  An excellent example of the “handcrafted” approach is Lenat’s CYC project at MCC (Lenat & Guha

1990), an out-growth of the Atari Encyclopedia project initiated by Allan Kay (Borning et al. 1983).
This kind of careful deliberate work will surely be needed to bootstrap systems to a minimal compet-
ence.  Large-scale intelligence and currency, however, will only come through the systems’ reading
what is written for people.
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AN 910214-0090
HL Who's News: Goodyear Tire & Rubber Co.
DD 02/14/91
SO WALL STREET JOURNAL (J), PAGE B8
CO *  GT WNEWS
IN PIPELINE OPERATORS (PIP) PETROLEUM
   (PET) AUTO PARTS AND EQUIPMENT INCLUDING
   TIRES (AUP)
TX GOODYEAR TIRE & RUBBER Co. (Akron, Ohio) -- George R.
Hargreaves, vice president and treasurer of Goodyear, will become president
and chief executive officer of the Celeron Corp. unit, a holding company for
Goodyear's All American Pipeline.  Mr. Hargreaves, 61, will assume the post
effective March 1 and will retain his current posts.  Robert W. Milk,
Celeron's current president and chief executive, as well as an executive vice
president for Goodyear, will be on special assignment until he retires April
30.

The availability of such “Who’s News” articles prompted me to consider the task
of automatically extracting information about people’s change in position. (The results
of this experiment are given in Section 4.)  This means that the article is analyzed by a
computer program to recover a set of four tuples consisting of the action, person or
persons affected, their position (title), and the company or subsidiary. The tuples are
then entered into a database.  Below is an example of the first such tuple in this article.

#<edge75  80 Job-event 105
  event: #<event-type become-title>
  title: ( #<title “president”

#<title “chief executive officer”>  )
  person: #<person Hargreaves, George R.>
  company: #<subsidiary

of: #<company Goodyear Tire & Rubber Company>
name:  #<co-name “Celeron Corporation”>>>

In this paper we examine the challenges that the effort to develop such a system will
pose for research on natural language understanding. We begin by identifying the two
central problems that this research must solve, and then move to describing the approach
taken by the “Sparser” system, a mature program for extracting information in specific
domains from unrestricted news articles.

1.  Two Central Problems
Obviously, if a computer program is to learn anything from an English text, it must

have some procedure for determining the information the text contains—some kind of
natural language understanding system.  But while many understanding systems have
been developed over the last forty years (see Grosz et al., 1985, for a definitive set of
early reference papers), none can yet meet the needs of the kind of text-based intelligent
system we all envision.  I believe that before this can happen, two large problems must
be solved.  
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The first problem is that the information literally present in any naturally occurring
text is only a fraction of the information that is conveyed to the person who reads it.
These “omissions” must be recognized and the gaps filled before a program will
understand from a text what a person would. This is a problem requiring both general
inference and very specific textual inferences.  Instances of these problems are ubiqui-
tous since almost nothing in a text can be taken at face value:  Simple numbers (43) may
actually denote amounts in millions of dollars; unknown proper names (April
Wednesday) must be categorized from context; the amount a value has plunged will be
orders of magnitude different whether it is the value of a stock or of a currency in the
international markets. (The first two inferences can be guided by linguistic clues from
the rest of the text, the third requires general knowledge.)

This kind of ability to make inferences from what is given literally in a text – “to
read in between the lines” – is not a problem for people since we unconsciously recover
the missing information from the context provided by the rest of the article, from what
we know about the conventions of the author or the publication, and from the general
stock of information we already have.  In fact, most of the information people see in a
text will be facts that they already know.  These will be matters of common sense (e.g.
all the information needed to make the passage sensible to, say, a three year old---or
better, a martian), as well as facts and descriptions they have heard before.  All that
reading the passage does is bring the older information to mind and add or modify par-
ticulars.  

In short, as they read the literal information a text contains, people bring a wealth of
general and situational knowledge to bear, dramatically expanding the total amount of
information the text conveys.  Computer programs must do the same if they are to take
away from what they read all that a human author intends.

The second problem, and the focus of this paper, is the problem of parsing.  For
present purposes I will define “parsing” as what a program does to determine the literal
information a text contains, i.e. the information against which it can then bring its wealth
of general knowledge to bear.  This is a simpler problem than what some natural
language understanding systems have taken as their task.  Dyer’s BORIS system (1983),
for example, both recovered the literal information in the text and drew on background
information that enabled it to infer much of what people reading the same passages are
able to conclude by “reading between the lines”.  

There is, however, no principled limit on the scope of the inferences that can be
drawn from reading a text.3  This can greatly complicate the design of a system, since
the kinds of knowledge involved in general inferences are very different from those
needed to analyze linguistic structure, since they are dependent on just what background
information is available and on how many assumptions one is willing to make in coming
to conclusions.  If we want to distinguish between “parsing”, which can apply
generally to any text, and “inference”, which will vary according to the knowledge of
the reader, then we must draw a line at some point.  A logical place is just at the limit of
extracting the information that is literally present, given knowledge of the meaning of the
words and grammatical relationships.
                                                
3  This was demonstrated in the thesis of Chuck Rieger (1974).  The problem is that some inferences

seem obvious and lexically driven, for instance that upon reading that “John Doe was appointed
CEO, succeeding Mary Roe, who retired”, we all know what position Ms. Roe used to hold.
However, what principle would allow us to distinguish that kind of inference – on the basis of struct-
ural properties alone – from inferences such as that she no longer receives a salary from her old
company, assumptions about her probable age, her possible interest in trust funds, etc. ?
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As mentioned above, there has already been a vast amount of research on the parsing
problem.  But I will argue here that, with exceptions, the parsers that this research has
produced are inadequate for the task, and that new parsers must be  developed along
very different lines.  

All parsers, from Earley to Riesbeck to Marcus,4 draw on roughly the same "surface
linguistic" knowledge to do their analyses, i.e. knowledge of how words combine into
phrases because of their positions, their morphology, identities, categories, etc.  This
much is not controversial; the real issue is what the output of the parser should be.
Most parsers stop just with a structural description: a tree of nodes that dominate words
that have been identified just by their part of speech.  These nodes are labeled with
syntactic categories (e.g. noun phrase, sentence), and information will be available in the
tree about the grammatical relations among the nodes  (e.g. subject, prepositional phrase
adjunct, theme).  

A few parsers, however, go further and recover information about "who did what to
whom" and identify the intended sense of each word.  Only this second kind of
parser—one that recovers the semantic content of a text—will be of use to a text-based
intelligent system.  

To a certain extent, of course, this distinction in parsers is simply terminological.  A
parser that stops with a structural description can obviously be coupled with a semantic
interpretation component that analyzes the structural description and the words to arrive
at the same information as the second kind of parser produces directly (i.e. some set of
concepts and the relations among them).  

However, if one looks at the research goals of people working on the first kind of
parser, for example Berwick and Weinberg (1984), they tend to be studying the conse-
quences of using different theories of grammar or how to constrain structural syntactic
ambiguities—not how information can be extracted from unrestricted, naturally occur-
ring text to support a text-based intelligent system.  Since different goals lead people to
be interested in different problems and to adopt different approaches, it seems only real-
istic to expect that only research directly on how to understand unrestricted texts, and
not simply on how to describe them linguistically, is most likely to yield an efficient
design for a text-based intelligent system.

                                                
4  These three people have each had a strong influence on the design of parsers.  Jay Earley (1970)

invented a standard algorithm for parsing with general context free grammars, establishing the basic
efficiency parameters of the process and introducing a set of techniques that widely influenced the
design of later parsers, even though it was oriented more towards computer languages than human,
“natural” languages.  Chris Riesbeck (1975) invented the first “conceptual analyzer”, specifically for
reading simple English stories.  A conceptual analyzer uses heuristics to try to recover the concepts
and relations expressed in a text, without particular concern for its syntactic form.  Dyer’s system is
a quite sophisticated conceptual analyzer in terms of the kinds of conceptual knowledge it could
employ, but its underlying parsing mechanisms are essentially the same as Riesbeck’s and reflect
progress within a unified school of thought.  Mitch Marcus (1980) invented the so-called “wait and
see” parser.  His parser was “deterministic”, in the special sense that it constructed only one analysis
and never retracted any of its decisions (this is the notion of “indelibility”, see McDonald 1984).  It
achieved this by waiting on its judgements until it has accumulated enough evidence to be certain.
He recovered a description of the syntactic form of a text, designing his parser so that it could
account for some of the psychological observations about the human parsing process.
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2.  Parsing unrestricted text
To be useful, our text-based intelligent system of the hopefully not too distant future

will have to deal with the actual texts that people read.  A business program should read
the Wall Street Journal every day; it should not have to depend on a person to transcribe
the Journal into some acceptable computer-pidgin.  A concomitant requirement is that
there can be no restrictions on what texts the system is prepared to process; it cannot
depend on a person going through the Journal and passing it only those articles that it is
likely to know how to handle, but must be able to process any text whatsoever, even if it
understands nothing in it.  (This capacity simply to get through a text without stopping
because of a bug or a request to the user is sometimes known as “robustness”.)
Unrestricted text imposes two key goals for the design of a parser.

Goal #1:  It must be a "partial" parser.
While there are a number of parsers today that can produce syntactic descriptions of

unrestricted texts,5 no parser even comes close to understanding everything in a real text
such as a news article.  While part of the problem is the lack of grammatical analyses
for the breadth of constructions found in unrestricted texts, the real, fundamental
problems are semantic and conceptual—today’s computer programs simply are not able
to make sense out of the bulk of the information in texts they are given to read because
they lack the needed concepts and referents.

Instead of trying to understand everything, much of the research on parsing today is
directed at the problem of extracting very specific information.6  This has led to the
concept of a “partial” parser, one that is specifically designed to recover a particular
class of information while ignoring stretches of text on other subjects.  A partial parser
makes a careful and thorough analysis of the portions of text it is designed for, while
skipping over the irrelevant portions.  In addition, a partial parser is exceptionally careful
that what it does analyze is accurate, i.e. that the analysis would not change if it had been
able to made sense of additional parts of the text.

To be concrete, imagine that we have a text-based system that knows something
about currency trading and that it sees in the second column of the front page of the
Journal the lead text “The dollar plunged, partly on the Treasury's report of an unex-
pectedly large deficit...”, (n.b. this is from a real text).  It is entirely possible that the
system could have the concepts needed to understand the main clause (“the dollar
plunged”), while not having those needed for the adjunct (“, partly on ...”).  On the
basis of those concepts and referents the parser would be able to link the phrase "the
dollar" to the object that represents U.S. currency in its domain model, rather than
linking it to its unit for the quantity of money worth 100 cents or to some individual
dollar bill, etc.  Similarly it would be able to determine that the appropriate sense of

                                                
5  While these parsers have, indeed, robustly analyzed tens of thousands of words of texts (e.g. Hindle

1983, de Marcken 1990) the analyses they produce are not complete. They produce a forest of phrases
rather than complete sentences or larger units, e.g. NPs, verb groups, PPs, minimal clauses, etc.
Given that they are making a conventional syntactic analysis, these fragment-sequence analyses are
their only way to get a single, definitive analysis.  If one insists on full-sentence analyses of
unrestricted texts, then one must be prepared to accept potentially enormous ambiguity, sometimes
many hundreds of analyses for a single 25 word sentence (Clippinger et al. 1982).

6  Labels such as “information extraction” or “message processing” are often used to distinguish this
research from what had been done before.
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“plunge” is “fall in value against other nations' currency”, rather than “dive into
water” or simply “fall in value”.  

Within the adjunct, if we assume that the parser does not know the idiom
“..<event>.. on the report of...”, it will not be able to completely analyze the whole
phrase (though it may well have a partial analysis).  Nevertheless, to be effective the
parser must still be reasonably sure that the information in the adjunct does not change
the meaning of the main clause.  

The kind of information just described is an example of what I mean by “literal”
information—the proper target of a parser.  On the other hand, knowing that the
“plunge” by the dollar may have come to just 2 Yen, or that “unexpectedly large”
deficit may have been more than 120 billion dollars, is a very different matter, since this
information is something that only someone who understood this subject matter would
know, and they would have to already know it if it is to come to mind when they read
this text, since it is not given literally but is inferred—it is not be the parser's problem.
These would be instances of the first problem, bringing general and situational knowl-
edge to bear to understand more than the literal content of a text.

Goal #2:  Coping with unknown words
As just defined, a partial parser is targeted for a specific kind of information and is

designed to identify and analyze such information even when it appears embedded
within a text that covers many more kinds of information than just that target. What this
means is that we will have on the one hand a set of one or more algorithms and text
processing mechanisms that are hopefully fairly general, and on the other a body of
rules, a “grammar”, that embodies the parser’s knowledge of the target information and
how it appears in a text.

The greater part of a topic-specific grammar will consist of rules about words, the
“content words” that convey concepts and relationships that can be quite specific to the
domain of interest.  This will include not only the technical vocabulary that may be
unique to the domain, but also subtle shadings to the meanings of ordinary words such
as “old” and “new”.7  

If it has good coverage, the parser will also know most of the “function
words”—e.g. “to”, “does”, “who”, “a”—whose role in the language is not so much
to identify concepts as to indicate grammatical relations.  It may also know words from
the vocabularies of very common subjects such as dates, measures, numbers, money, etc.

These words are “known” to the parser in the sense that it has specific rules that it
applies when they appear in a text: starting a certain kind of phrase, retrieving a certain
concept, establishing a certain relationship, etc.  By this token, a word is “unknown” if
the parser has no rules for handling it.  Today, given what subjects are tractable for a
parser to extract and what actually appears in a general text source like a newspaper or
newswire, the vast bulk of the words a parser will encounter will be unknown.8  

                                                
7  In the domain of employment, consider the differences between “the    new     position of assistant vice

chairman” and “A    new     president wasn’t named”.  The new position is one that didn’t exist before in
the company’s job roster.  The new president will be new to the position but nothing about him or
her per se will be new.

8  Of course if all one wants from a parser is a description of the text’s syntactic structure, then a
machine-readable dictionary can supply information about part of speech (noun, verb, adjective,
adverb) and a number, possibly a large number, of general definitions in natural language.  But this
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If all the unknown, off-topic words clustered together into their own portion of the
text, then the partial parser’s job would be simple: just skip over those parts.
Unfortunately, this is anything but the case. Unknown words can appear anywhere, as
unknown verbs between known noun phrases, unknown adjectives within noun phrases,
etc. Even if all the content words in a sentence are unknown, it will still contain function
words (an average of one every 3.5 words in the corpus described in Section 4), and
these may activate the parser’s mechanisms even though ultimately nothing will be
extracted.  How a partial parser copes with unknown works will tell a lot about the
quality of its algorithms.

3.  A Multi-Algorithm Partial Parser
In keeping with this goal of a parser that can accurately extract literal information

from unrestricted texts, I have developed a system called “Sparser” that is designed to
extract selected information from unrestricted text sources such as news articles in the
Wall Street Journal.  

I began work on this kind of parsing system in late 1987.  An in-house production
version using different techniques was used extensively at MAD Cambridge from mid-
1988 through early September of 1989. The current version is a complete reimplemen-
tation done during the summer of 1990 in the course of about three months on a Mac II.
Sparser is written in CommonLisp and has been ported to several unix platforms and
several different vendor’s CommonLisps.  On the Mac II it presently runs at between
20 and 200 words per second depending on what layers of the system are being used.  

As one would imagine, the design of this parser has much in common with other
systems with similar goals, in particular the systems of Jacobs & Rau (1988), Riesbeck
& Martin (1985), sublanguage-based systems like Sager's (1981), and in certain
respects systems that produce a succession of phrases rather than sentences such as
Hindle's (1983) or O'Shaughnessy's (1989).  

In the rest of this section I will sketch the particular algorithms Sparser uses and the
motivations behind them.  A thorough discussion of the special properties of the prim-
ary parsing algorithm can be found in (McDonald, 1992).

3.1  Why multiple algorithms
Sparser has multiple parsing algorithms primarily because this makes it easier to

write grammars. Information is distributed in a text in many different ways, and algor-
ithms can be tailored to these differences according to the moments and forms with
which the information becomes available and the way in which the rules for noticing the
information are expressed.

An additional benefit comes from the ways a set of algorithms can be woven
together. Given a careful control structure, there is no need to regiment them into a strict
sequence or cascade; control can pass between the algorithms in reentrant loops, e.g.

                                                                                                                                          
leaves the parser with very large problem of ambiguity, and it does not provide meanings for the
words in the form information extraction systems need them, since their goal is invariably to feed
another computer program, today a database, but tomorrow an intelligent text-based system.
Moreover, a great many unknown words will not be in a dictionary, some because of their rarity, but
most because they are proper names—an open, seldom cataloged set.
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information that is found by a later algorithm can lead to a reexamination of the text by a
normally early algorithm, causing it now to draw conclusions that were unavailable to it
the first time through.

This is especially true when unknown words are involved. A first pass by one class
of algorithm may make observations based on weak phrase-internal evidence, the
boundaries of the phrasal segment are then established by a second class of algorithm,
and the final classification is made only much later once enough contextual evidence has
been accumulated from other parts of the text for the judgement to be certain.

In the case of Sparser, the algorithms are incorporated into six interleaved compon-
ents: a tokenizer, a set of transition networks, a context-free phrase structure parser, a
context-sensitive parser, a conceptual analyzer, and a heuristic facility that hypothesizes
phrasal boundaries using the grammatical properties of function words and partially-
parsed phrases.  

We will look at each in turn, starting with the simpler and more conventional, and
then moving to the more heuristic algorithms designed specifically for coping with
unknown words.

3.2  Tokenizing
Over all, a text parser is a transducer from the stream of characters that comprise the

text to some abstract structured representation of the information it contains. Since
characters are simply a means of representing words and punctuation, the first step in
parsing is to segment the characters into orthographically sensible groups and look up
the words that correspond to them, a process known as “tokenizing”.

Sparser uses a very conservative tokenizing algorithm, grouping together contiguous
sequences of characters of the same class, i.e. alphabetics, digits, or identical
punctuation. Where most other tokenizers would see “$4.3 million” as two tokens or
even one, Sparser sees it as six (including a reified “word” representing the space),
leaving it to later stages to combine the minimal tokens into phrases and to categorize
them when context can be taken into account. This delay can have considerable advan-
tages.  For example, the string “F-14” in one context could be the name of an airplane,
in another a function key on a computer keyboard. Some systems make this judgement
within their tokenizer, but I see that as a mistake since it commits the system pre-
maturely, i.e. before any of the surrounding context can be taken into account. To
Sparser’s tokenizer the string is just the capital letter “F”, a hyphen with no intervening
spaces, and the number fourteen; to the next level of processing it is a still only a
“hyphenated letter-number sequence” (in recognition of the fact that there are no
spaces between the tokens), and it is left to the phrase structure components to apply
contextual knowledge and make the substantive judgements.

The tokenizer is the level that first comes into contact with unknown words, i.e. any
character sequence not already in its lookup table. Unknown does not mean without
properties however. The tokenizer notices capitalization and the presence of affixes (-s, -
ed, -ing). These properties define artificial words that can be reacted to by later
algorithms just like a known word.

3.3  Word-level transition nets
When the words are known most phrases will be built up by noticing pairs of

adjacent elements: specific words, words labeled by their categories, or already formed
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labeled phrases. The question then arises as to what internal structure the phrases
should have. Most of the phrases linguists study are best described as binary branching
trees where each lower constituent is well-founded semantically and makes a disciplined
composition with its neighbor word or phrase. However, other, less studied but
extremely frequent phrase types such as proper names, numbers, and some word com-
pounds involve little or no composition, and are best seen as flat structures.  For parsing
these, Sparser provides hooks for a transition net facility that operates over the stream of
words output from the tokenizer.

In principle, the phrase types could be handled with a minimal impact on efficiency
by the phrase structure rules that operate at the next stage. The transition nets are used
because it is a more natural description for the grammar writer to choose. Similarly,
other researchers have used much more elaborate pattern matching facilities at the word
level,9 while I have judged that the kinds of things these complex patterns search for are
more easily stated in terms of phrase structure rules and handled at a later stage.

3.4  Phrase structure parsing using semantic labels
The phrase structure parser is driven by a grammar of conventional rewrite rules and

constructs trees of phrases stored in a chart. Its algorithm (McDonald 1992) is an
unusually efficient deterministic variation on bottom-up parsing, and, like all phrase
structure algorithms, it is reacting to patterns of adjacent labeled constituents.

What is usual about Sparser’s rewrite rules is that they employ primarily semantic
labels on phrases rather than syntactic. That is, rather than label the text "the dollar
plunged" as a clause consisting of a noun phrase (consisting of a determiner and a
noun) followed by a verb phrase consisting of a single verb, Sparser’s grammar will
label the dollar as, e.g., “currency” and plunged as a verb of motion.10 The syntactic
labeling is of course correct, but it is not to the point. Sparser’s goal is to extract
semantically characterized information, not to produce a syntactic structural description.

This approach to the choice of labels integrates the process of disambiguating word
senses directly with the process of analyzing grammatical relations and forming
phrases: a phrase will only be formed if its elements are semantically, as well as
syntactically, consistent.  This approach also dramatically reduces the number of struct-
ural ambiguities ever considered.  

This kind of design was first worked out by Burton and Brown (1979), and while
considered an effective means of engineering a grammar for a small domain, it never
gained support as a general strategy for syntactic parsers. This historical fact reflects the
general trend in computational linguistics to see parsing as an isolated process just
concerned with the recovery of a text’s structure. In the context of text-based intelligent

                                                
9  Often full regular expressions are allowed, with boolean combinations including optional elements,

wildcards of stipulated length, variable bindings, etc., even multipass cascades to resolve “meta-
tokens”; see e.g. Masand & Duffey 1985.

10  Actually, Sparser’s labeling scheme is more complex than this. Every  parse node has three “label”
fields. The primary label is taken from a semantic vocabulary, but it is shadowed by a conventional
syntactic label that is used in default rules, and there is also the category of the phrase’s denotation.
For the case of dollar, its primary label is “currency”, but it also has the label “head noun”, and a
structured ambiguity in its denotation between “physical object”, “quantity of money worth 100
cents”, and "the value of U.S. currency on international money markets". This ambiguity is resolved
by the propagation of semantic constraints as phrases are formed, e.g., only a “value” is able to
move and so the last sense is the one taken when a currency is combined with a verb like plunged.
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systems, however, this view is myopic.  The purpose of a parser is to facilitate the
recovery the information a text contains, and any technique that speeds that effort is to
the point. By folding interpretation and structural analysis together through the use of
semantic labels, one is insured that every phrase that is allowed to complete syntactically
will never be rejected semantically—a dramatic savings in efficency at the cost of a
multiplication in the number of rules in the grammar, which is a tradeoff easily made in
today’s computational architectures.

3.5  Context-sensitive phrase structure parsing
In a context-free phrase structure rewrite rule, a sequence of labels is matched

against the labels of adjacent constituents in the text. If the match succeeds
(“completes”), the entire sequence of constituents is composed into a new phrase and
given the label that the rule dictates. A context-sensitive rule can be seen as a matching
operation against a sequence of adjacent constituents, with the exception that now only
one of those constituents is relabeled rather than the whole sequence.

Context sensitive rules are used extensively in Sparser’s grammars. They allow
information to be accumulated gradually. Early rules can be cautious in their assump-
tions about what a phrase denotes (as in “hyphenated letter-number sequence” or
“name”), waiting for a context to accumulate around the phrase through the action of
other rules. Once the context is established, a context sensitive rule will be triggered to
enrich the categorization, e.g.  name -> person  /  ____ <was named CEO>.

3.6  Parsing non-adjacent constituents with a conceptual analyzer
The conceptual analyzer algorithm is responsible for composing constituents that

are not adjacent (and so are invisible to the phrase structure algorithm), but which can be
linked on semantic grounds based on how the constituents are labeled. The primary
function of this component of the parser is to make it possible to “skip over” regions
of the text that are outside of the system’s competence.

Consider the following text from the perspective of a grammar of employment
change. In bold are the text segments that the parser understands; a relative clause (plain
text) intervenes between the person that is the subject of the sentence and the
“appointment” verb phrase that it should combine with.

.. Robert A. Beck, a 65-year-old former Prudential chairman who
originally bought the brokerage firm, was named chief executive of
Prudential Bache. ...

Even though the grammar contains a rule for it, the phrase structure algorithms
cannot compose these segments because they are not adjacent. Instead, the conceptual
analyzer algorithm, triggered by these “stranded” constituents, uses the grammar rule
to define a search path to try and join them. In this case, the appointment verb phrase
searches leftward through the partial constituents until it finds a person constituent to
compose with. The search is constrained to fit the grammatical relation this rule instant-
iates, namely that of subject to predicate in a clause. This means that it will fail if the
search extends beyond the current sentence or across constituents that could not be
interposed between a subject and its predicate verb phrase.

The notion of a conceptual analyzer (CA) was developed by Roger Schank and his
students through the 1970s at Yale (for a practical summary, see Birnbaum & Selfridge
(1981)).  Sparser’s version is based on the same philosophy—the composition of
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phrases based on their semantic (“conceptual”) characteristics rather than
syntactic—with the significant difference that Sparser’s CA is operating in conjunction
with a set of other parsing algorithms, and so is not also responsible for assembling the
small, syntactically rich phrases where traditional techniques excel. In the traditional CA
design, all parsing is done by searching for patterns of semantic elements. This leads to
stating simple syntactic facts in a complicated semantic pattern language, again an
unnecessary burden on the grammar writer.

3.7  Forming phrases heuristically
Working together, these algorithms can efficiently recover a description of the

portion of a text where the words are known.  Where they are not, a heuristic facility is
drawn on to deduce as much as possible.  This facility uses the linguistic properties of
items such as inflectional and derivational morphemes (e.g. ‘+tion’, ‘+ed’) and funct-
ion word vocabulary (e.g. is, from, and) to deduce the boundaries of phrases even
though it does not recognize most of their words.  For example when the function word
the is seen it knows that that must be the start of a noun phrase; an auxiliary verb like
does or a preposition terminates whatever phrase came before it.

This basis for segmenting a text can be combined with the phrase structure rules to
allow phrases to be formed that would otherwise be missed. Consider the real example
“... this gold mining company was ...”. Two unknown words keep the conventional
algorithms from forming this noun phrase, but in its context the function-word driven
heuristics guarantee that it all four words are in the same phrase. Given that there is a
phrase structure rule in the grammar that would have combined this and company had
they been adjacent, we are entitled to span this entire phrase using that same rule. This
will give us the label for the phrase, allowing it to be passed to the adjacency-driven
algorithms for composition with its neighbors, even though we don’t understand all of
what it means. These techniques complement the conceptual analyzer, since they make
constituents adjacent (and so accessible the phrase structure rules, the backbone of
Sparser’s operation) by allowing constituents to form even when they include unknown
words, while the conceptual analyzer searches across unparsed text segments for which
no analysis was possible.

Similar techniques are used by Hindle (1983) and O’Shaughnessy (1989), where,
as in this case, the emphasis is on recovering a relatively robust parse of successive
phrases, rather than insisting on a full parse of entire sentences, with the concomitant
problems of structural ambiguities discussed above.

4.  Results in practice
The real test of any parser architecture is in how well the grammars written for it

perform in realistic tests. Of course some of the results will be a function of the linguis-
tic skills of the grammar writer, but the relative ease of use of the parser’s rule notations
will always be a key factor.

Sparser was put to its first significant test in May of 1991 with a relatively large
grammar for extracting information on people changing jobs. 203 previously unseen
articles from the Wall Street Journal were analyzed by the parser and the results com-
pared against a human analyst’s judgements. The articles were literally the second half
of all articles in the Journal that were labeled with the tag “WNEWS” during the
month of February. They included short articles specifically about job changes, as well
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as long columns and even features where the information was incidental. Roughly three
man months had gone into preparing the grammar for this domain, resulting in approxi-
mately 2300 rules, though these were known to be insufficient to account for many of
the cases found in the training set.

The test was to identify all possible instances of the four-tuple: person, company or
subsidiary, title, and type of event (e.g. appointment, retirement). In the texts, these
corresponded to every clause with a relevant verb, as well as redundant cases of nomi-
nalizations and anaphoric references.

The results were strong, considering the amount of time invested. Four out of five of
all possible events were correctly identified (597/735).  Of the events identified, four out
of five were completely correct in all four fields (486/597), with the bulk of the deficit in
omissions (empty fields) rather than actual mistakes. The false positive rate was 3%.

5.  Directions
It is unlikely that even with a great amount of work extending the present kind of

grammar that the success rate on this task could be brought close to 100% (discounting,
of course, texts that a person wouldn’t understand either). Previously unseen verbs and
new titles will always continue to be seen, and even the most carefully edited texts
include occasional errors. The only way to surmount these problems would be by
adding a new kind of component, one that deduced the category, if not the full meaning,
of unknown or mistaken words.

This is not an intrinsically difficult problem (see, for example Hirschman (1986)
and other papers in the same volume).  But it can be very much easier or harder depend-
ing on the architecture of the parser. There must be an explicit model of the
relationships among the grammar's rules, and the rules must be applied in a conservative,
monotonic manner or else there will not be an adequate representation (the intermediate
states of the parser) to run word-induction heuristics over. Sparser is consistent with
these properties, and some early experiments have been promising.

Another area of concern is the amount of labor needed to assemble a grammar for a
new domain when using semantic instead of syntactic labels. Once the idiosyncratic
constructions like dates or money are discounted, one syntactic grammar will cover
nearly all texts, and it will need only hundreds of rules rather than the thousands
required for each topic area when semantic labels are used as the lexical and phrasal
categories.

However, to a certain extent, this is just a consequence of moving into the phrase
structure rules much of the apparatus that would have had to be in the total system
anyway, though with a syntactic grammar it would have appeared in the “semantic
interpretation component” rather than in Sparser’s rules. As the goal is to understand
the text and not simply describe it, the full set of categorial distinctions and composition
schemas of the domain is required and having one or two orders of magnitude more
rules is inevitable.

Nevertheless, one would like the process of adding a new domain to go more
quickly, and we are investigating two possibilities. The first is to tightly couple the
grammar writing process to the process of defining the concepts, relations, operations,
etc. of the actual semantic model and reasoning methods of the new domain. We have
taken some initial steps in this direction (McDonald 1991), at the same time tieing in the
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capability of reversing the process and generating texts from the objects of the concep-
tual model as well as parsing to them.

The second possibility is to collapse many of the rules of linguistic composition
together by moving a certain class of the categorial distinctions into the semantic struc-
tures that accompany Sparser’s parse nodes (see footnote 10), having the differences
that only affect interpretation without differentiating the possibilities for composition
operate at a different level (though at the same time) as the parsing rules for assembling
nodes out of constituents. This work is being done in collaboration with James
Pustejovsky using his theory of the generative lexicon (Pustejovsky 1991).
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