
AAAI Spring Symposium 1 session: Natural Language Process for the WWW

Markup is Markup

David D. McDonald
Gensym Corporation

125 Cambridge Park Drive, Cambridge MA 02140
617 547-2500 x425, dmcdonald@gensym.com

Abstract

This position paper makes several simple points that locate the treatment of Web pages within the spectrum of approaches to
the texts that are normally used by the linguistically sophisticated language processing community. The first point is that what
ostensibly makes the Web a special kind of text, html markup and links, is just a variation, albeit a very populist one, on text
types that much of the community has been working with for a long time. Two other points deal with specific techniques that
the author has used in his own work with such texts which seem to be particularly effective at providing a graded syntactic and
semantic analysis of unconstrained texts with markup.

1. The Impact of Markup
The most important point to make is that the truely sig-
nificant difference is not between Web pages and other
types of text but between texts that include markup, the
Web among them, and texts that do not. All of our prior
experience with markup of any sort carries over to the Web;
we are not starting afresh. Taking the chance of restating
the obvious, let me begin here by reviewing what
constitutes markup, and then discussing some of the
benefits and complications of doing linguistic analyses for
content using texts with markup.

1.1 Different sorts of markup
Generally speaking, markup is the addition of information
to a text that identifies its parts and their relationships to
each other while not contributing to the text's wording or
conventional content. The original notion is probably
‘printer's marks’—character sequences that book publishers
introduce into the electronic form of a manuscript to
indicate to the typesetting devices when a region is to
appear in bold, when the fonts shifts, alternations in
leading, and so on. The idiosyncrasy and specificity of
purpose of this sort of markup, however, make it not
particularly well suited to nlp programs, something that is
all too familiar to the people who have had to interpret and
strip them from electronic dictionaries.

From the early days of professional computing we
have marked up our documents with commands directed at
formatting programs ranging from troff to Tex. This
document itself is being written using invisible (wysiwyg)
markup maintained by Microsoft’s Word program. This
markup can be made explicit, and thereby acces-sible by a

. The work reported in this paper was done in 1993-95

while the author was self-employed. The opinons ex-
pressed here are his own and not necessarily those of
Gensym Corp.

program, by having the document written out using RTF,
“rich text format” (as opposed to writing it out using one
of Word’s own custom formats or in ‘plain ascii’ or pass-
ing it through a postscript compiler for printing). The
author has worked with texts (documentation) in ascii that
incorporated standard markup derived by rule from the RTF
version of the originals by a program written by Bran
Boguraev. While RTF and its equivalents in the PC world
are at least as awkward as printer’s marks, they still are a
means of having a document with markup as the starting
point of one’s analysis rather than just a stream of tokens
and whitespace.

Standard markup in the form of sgml (html is just an
instantiation of sgml) is far and away the simplest sort of
markup to process (beause of the uniformity of its angle-
bracket notation) while simultaneously being the most
expressive (because it is an open-ended standard). In contrast
with the other forms of markup, the thrust of sgml as a
standard is to encourage the delimitation and naming of text
regions (markup) according to semantic criteria rather than
just as a means of constraining their presentation in some
viewer.

In the NLP community, we have seen simple
instantiations of semantic markup since the first LDC
corpus distributions, and more recently with the advent of
efforts to construct semantically tagged tree banks and with
the results formats of MUC-6 (which were marked to
delimit company and person names, dates, and so on). It is
also beginning to appear on the Web. The SEC Edgar site
with its data on corporate financial filings (www.sec.
gov/edgarhp.htm), for example, looks odd to the
uninitiated, since it comes up as plain text interspersed
with notations in angle brackets. These notations are of
course sgml tags, and they provide enough of a structural
overlay to the text to permit it to be processed for content
by very simple programs.

Unfortunately, even though sgml has the longer
history and greater flexibility, html is what everyone has

AAAI Spring Symposium 2 session: Natural Language Process for the WWW

and is what virtually everyone uses. This can lead to the
regrettable practice of encoding semantic information in
patterns of html tags, a problem that will be touched on
below.

There is no conflict in principle between having
markup for both content and form. With the right software
(which doesn’t appear to exist commercially, though it
would be nice to be shown wrong), the DTD of an sgml
instantiation could be annotated with corresponding html
tags. This would allow simple Web pages to be produced
automatically from the sgml documents. (These pages
would have no links or just those constructable by rule.)
With adaptations to the browsing code we could then
arrange for us or our programs to access the original,
semantically tagged document files just as easily as we
today can access the html files.

1.2 Focusing analysis
Here and in the rest of this paper I am taking the goal

of the enterprise to be information extraction, which means
the nlp analysis program will be answering questions such
as what is this page about, or if that can't be determined,
are there identifiable phrasal fragments that would give a
better guess at the topic than an isolated word search; if the
topic is one that we have a model for, what is this page
saying. Vastly many other goals for applying NLP to the
Web are conceivable and practical, but I will restrict the
discussion here to just IE.1

Part of what makes the Web fascinating and impor-
tant is that it is a populist medium where virtually anyone
can be a content publisher, not just those with specialized
technical skills or authors going through established,
editorially-controlled channels (regular newspapers or maga-
zines). This means that we have content from grade school
kids and the SEC all on the same network. (I would venture
that even the SEC would not have a substantial Web
presence if it wasn't such an easy to do.)

Given that range, any IE application for the Web will
have to deal with texts that aren't pre-selected by topic and
will of necessity end up giving graded, partial results in
most cases.2 This is enormously difficult to do in a text

1 I am also personally interested in generating pages

dynamically. For instance in an application currently
underway I am generating pages for the transcripts and
requirements audits of undergraduates, which includes some
pages that are generated on the fly in response to queries
such as what courses are still available for satisfying a
particular requirement given what courses from that group
the student has already taken. In the future I expect to take
up the problem of dynamically generating summaries.

2 This happens to be precisely the application model for the
original Tipster program: use powerful information
retrieval to winnow the full set of texts into small sets by
topic and then hand those texts off to semantically-
specialized, sublanguage specific language compre-hension
system (Information Extraction systems) that put the
references and relationships that they have identified into

that has no markup, but becomes more plausible as markup
is added, and even more so to the extent that the markup
indicates semantic rather than presentational types. The
primary thing that this markup is adding is a capability to
focus or narrow the analysis program's atten-tion region by
region through the text.

A simple but quite serious case where focus is
important is knowing when the text region being analyzed
corresponds to a title. The motivation for this is that one of
the more successful things on can do in the shallow
semantic analysis of open texts is to identify which text
sequences correspond to names. Given the name of a comp-
any, a person, a place, a movie, rock group, etc. that name
can then be made available to a search engine, the page it is
part of can be correlated with other pages making the same
reference or constellation of references, both specifically or
by type, or, given good techniques for following subse-
quent references, the sections of the page can be grouped to
provide excerpts or a derived page produced with the names
pulled out as links or the original page republished with the
names marked up.

However, the standard technique for identifying new
names depends on the capitalization of the words in the
name as the means of delimiting it (see McDonald, 1993),
and the capitalization convention in titles is completely
different. If we know we are processing a title (e.g. we are
within the title or h1 through h6 tags) we can turn off the
capitalization-driven name finder and avoid substantial and
confusing false positives.

Consider, for example, the title “Sears to Sell Mail-
Order Line” (Wall Street Journal, 1/14/97). Assume that
the analyzer has a reasonable lexicon for mergers &
acquisitions and so will recognize the word “sell”, leaving
the segment “Mail-Order Line”. The body of the article and
our common-sense knowledge of the phrase 'mail order’
reveal that this segment is a descriptive noun phrase rather
than the name of a company (“... would sell its Fremans’
mail order unit to ...”), but how is a name-finder applica-
tion—which cannot, realistically, have a vocabulary large
enough to include phrases for every type of product and
service—know that that capitalized sequence isn’t the
equivalent of “North American Van Lines”, which is a
company.

When analyzing news articles (a non-trivial part of
the Web), one can expect to see every person or company
that is mentioned in a title repeated with their full names in
the body of the article. Therefore if the markup will allow a
title to be reliably distinguished from a body (and thereby
ignored), the set of candidate names made available to other
processes will be markedly more reliable.

Another example of markup providing focus is
decoding pronouns within list structures. In the documen-
tation I worked with (which originated as RTF and was
then rendered into presentation-oriented sgml), a standard
pattern was to introduce an operation within a paragraph

database format for use by other reasoning or tabulating
applications.

AAAI Spring Symposium 3 session: Natural Language Process for the WWW

(‘putting a floppy in the drive slot’), and then in a sequence
of list item segments, walk through all the steps that oper-
ation entailed. These steps tended to be phrased as
imperative VPs, and tended to refer to the (linguistically)
focused items with pronouns or very reduced DefNPs. By
recognizing this pattern of markup, I was able to structure
the search space for the references, recognize the leading
words as verbs with great reliability, fill in the missing
actor by default, and interpret the successive list items as a
sequence of actions.

Note that this pattern of paragraph preceeding list
items was not an explicit type in these document's markup.
The markup was presentation-based like html is, and the
pattern had to be encoded in the analyser's grammar just
like any other sort of grammar rule. If the markup had been
used for semantic purposes (which was not possible since it
was derived by rule directly from RTF), then stipulating it
in the grammar would be unnecessary since the semantic
tag or tags could be directly treated as non-terminal
categories.

Other instances of focus from markup are more direct.
The structural markup that can appear in the header of a
page (e.g. ‘base') is often virtually a semantic tag and can
allow one to directly apply a subgrammar to that segment
or to apply a specific set of heuristics if the vocabulary in
the segment is outside of what the analyzer knows (e.g. for
addresses in signatures).

These examples of markup providing a focus to the
linguistic analysis—selective processing modes and strong
heuristic assumptions—were salient and important to the
success of the projects in my own experience. I would
expect there to be many more such examples in other
people's work.

1.3 Processing markup
When we are treating a stream of characters as an ordinary
natural language ‘text’—which is what we want to do when
we apply NLP techniques to Web pages—we have
innocently assumed for decades that we could interpret all of
the characters as just words, punctuation, or whitespace,
and have built the lower levels of our analysis programs
accordingly.

The introduction of markup complicates this picture
considerably, and in this section I would like to touch on
some of the techniques I have used in Sparser (McDonald
1992) to deal with these complications.

Parsing a set of sgml tags per se (<title> ... </title>)
is quite simple. It entails encoding the vocabulary of tags,
anticipating the angle bracket patterns in that vocabulary
(not every instance of an angle bracket pair is necessarily
markup), and having a small grammar for organizing the
pat-terns that can occur within the brackets (e.g. <input
type="radio" name="6">). The question is what is done
with those tag objects after they are recognized.

We would like the normal operation of the parser to
be as unaffected by the presence of markup as possible, and
we would especially like to be able to use our regular IE

grammars with minimal or no modification. To achieve
this, I found it important to distinguish between ‘structural’
tags (such as title, h1-6, or li) and what I call ‘invisible’
tags. Structural tags only occur at what we would otherwise
think of as sentence or paragraph boundaries. They do not
affect the interpretation of the sequence of tokens within the
linguistic units that we feed into our sentence or phrasal
grammars. The tag set in the Wall Street Journal corpus
distributed by the LDC or in the Tipster corpus consists of
just structural tags demarcating sentence and paragraph
boundaries or indicating fixed data such as article id
numbers, publishers, topic stamps and so on.

Invisible markup consists of such things as emphasis
tags, anchors, and many of the instances of the break
tag—generally speaking any tag structure (the angle bracket
phrase taken as a whole) that disrupts the between-word
adjacency relationships that drive linguistic analyses. From
an IE system's point of view, invisible markup is
whitespace with virtually no linguistic significance for the
analysis, yet if it is handled like ordinary tokens it will
cause the content analysis to fail because the parser will not
see the expected adjacency patterns among the words in the
non-markup vocabulary.

Rather than complicate the parsing algorithm to
appreciate and skip over these tag structures, my approach
in Sparser is to hide them (hence “invisible”). Sparser uses
a chart that is implemented with objects that explicitly
represent the 'positions' between words. One of the fields
on a position records the whitespace (if any) that occurred
between the word to the left of the position and the one to
its right.

Intervening markup that has been indicated in the
grammar as invisible is caught by the processing level
between the low-level tokenizer and the process that
introduces (regular) words and punctuation into the cells of
the chart, and is placed in this whitespace slot in the
intervening position object. Stored there, it is truly invis-
ible to the chart-level parsing algorithms just as though it
were ordinary whitespace, while still being available to
processes that republish the text or that want to
heuristically interpret the implications of, e.g., some
phrase being emphasized.

2. Adapting IE to Unrestricted
Documents

The usual application for an IE system is to process a
preselected corpus of documents on a single topic in a
single register (or a set of these), where a semantic model,
target database representation, and sublanguage grammar
have been prepared in advance specifically for that corpus.

The Web can deliver such documents as well or better
than any other network medium given unambiguous
structural markers on the target documents or a url with a
guaranteed content, but that scenario does not fit 99% of
what is actually out there, and we would still like some
way of adapting what have proved to be quite successful

AAAI Spring Symposium 4 session: Natural Language Process for the WWW

techniques from information extraction to this wider world
of documents.

In the following two sections I would like to offer up
some techniques I have used when applying Sparser to
unrestricted texts. This work is anecdotal since the imple-
mentations were prototypes and the applications small, but
they are offered in the hope that others will find them
useful as well.

2.1 Two-level phrasal parsing with
semantic grammars

When properly disciplined to conform to sound
grammatical generalizations, semantic grammars are a quick
and natural way to write an IE application. The results are
nevertheless 'grammars' in the ordinary sense, and a parser
that uses them will still be depending on getting an
analysis for virtually all of the phrases and grammatical
relations in its target sentences in order to arrive a correct
description of their meanings.

Getting such thorough parses, however, depends on
there being a relatively small amount of variation in how
the documents of the corpus are phrased. For any fixed
amount of development that has gone into the preparation
of the grammar, we know that the greater the amount of
variation there is in the corpus, the more likely it is that
the grammar will have a gap in its coverage of a phrase
type or a pattern of grammatical combination.3

What this comes to in practice is that one can do
fairly well in a short amount of time if the corpus comes
from a single, well edited source; but the coverage will be
markedly worse with a long tail of small exceptions if the
source varies from document to document. I recently was
faced with just such a situation in a prototype application
to extract corporate earnings information, and developed
(what may be) a new technique of using semantic grammars
to cope with it.

Initially, I wrote a full sentential-coverage semantic
grammar targeted at a trivial sample (six short articles) of
earnings reports taken from the Wall Street Journal. It took
roughly a day to get 100% coverage on that sample, with
most of the time going into working out a general model
for ‘change in amount’ phrases such as “Net revenues for

3 The results of the last several MUC evaluations have

reached what some people have called a ‘glass ceiling’ in
that the performance of all of the best systems seems to
have remained constant at roughly fifty percent
recall/precision for several years in a row. Having looked at
the MUC corpora and done similar work myself, I
conjecture that the reason the results are so bad and show no
sign of improvement is that the range of variations
exhibited in the training corpora is only a fraction of what
appears in the genre as a whole (and that assumes there was
enough time to examine the whole training set, which is
often not the case). When the test corpus is run, the odds of
getting patterns that were not anticipated is consequently
quite high, and as a result today's IE techniques for semantic
analysis suffer since they are largely dependent on coding
the patterns directly.

the six months ended June 30, 1996, increased 54% to
$27,605,000 compared to $17,925,000 for the six months
ended June 30, 1995.” Testing on a (trivial) reserved set of
two more articles from the Journal was then accurate in 7
out of 9 sentences (tuples) with the problems being a new
case in the date phrase type and a new way to phrase the
main relation type, which is not too bad as such things go,
and was simple (ten minutes) to remedy.

Newspaper articles on earnings reports are worthless
commercially, however, since they appear the day after the
event and all the resulting stock trading has already
happened. So the next step was to go to the press releases
from which the articles were derived. These tend to appear
on the Web at about the same time as they are submitted to
PRNewsWire or its equivalent, so they are likely to
actually be useful.

Unfortunately, the initial results on twenty ‘ern’ press
releases using the given grammar and parsing algorithm
were pitiful: three out of roughly forty possible tuples were
correctly recovered. Several more hours of adding cases
changed the results very little, since it turned out that
literally every press release varied in one or more ways in
how it patterned the elements of the earning relation (i.e.
company, financial item (sales, earnings, etc.), amount,
time period, percent change, reference time period, amount
in that reference period). A quick examination by hand of an
additional ten press releases suggested that the accumulation
in variation was not going to top out with any small
amount of additional work.

In retrospect, this result could have been anticipated
from the fact that, unlike the articles from the Wall Street
Journal, each of the press releases had a different author,
each with his or her own particular style of phrasing. The
gross patterning was the same, presumably because the
authors were quite familiar with this genre of article, but
seen in detail, as a parser does, each author used slightly
different phrasings or orderings for one item or another, and
the cumulative effect was to introduce small but fatal gaps
in the grammar's coverage.

This is a telling result for applying an IE system of
standard design to the Web, since on the Web, in contrast
to the newspaper or newswire articles these systems were
developed for, virtually all the documents have different
authors. An alternative design is needed if these systems are
to work on the Web in any general way.

In response to this problem, I developed a prototype
of an alternative way of parsing the text in the press
releases, one that could well have useful application in a
wide range of text types provided that certain criteria are
met.

(1) The target content should center primarily on
phrases and less on clauses (e.g. mostly weak
verbs).

(2) There should be relatively little variation at the
phrasal level.

(3) There is a largely canonical order to how the
relevant information is presented.

AAAI Spring Symposium 5 session: Natural Language Process for the WWW

This description appears to cover meeting announce-
ments, person-company-title relations, addresses, possibly
things that anchor off of dates (the beginning of the page
with the call for this symposium falls into that category,
with its times for registration information, the plenary
session, due date, etc.), not to mention a vast number of
specialized, commercially important, mundane announce-
ments.

In such a domain and register where the variation
within the content-carrying phrases is quite small while the
variation in the grammatical ‘glue’ that links them
together is relatively large (because of variation in syntactic
relations and simple lexical choices like prepositions), the
idea is to ignore the glue and only tally up the phrases and
their gross order. Doing this entails running a conven-
tional, phrase-oriented partial parser over the text using a
semantic grammar, and then feeding its results, phrase by
phrase, to another level of surface analysis, ignoring the
glue or unrecognized phrases between the recognized ones.

This second analyzer is just a transition net, where
the transitions are conditioned by the categories of whole
phrases, with no assumption that successive phrases are
adjacent. (This is equivalent to a conventional recursive
transition network parser with wildcard transitions between
each state. A two-level system is just a simpler way to
implement such a ubiquitous distribution of wildcard
transitions.) Here, for example, is the network that I wrote
for the earnings press releases. The abbreviations labeling
the arcs are C for company, Q for quarterly time period
(“the first quarter of 1996”), Y for yearly period, FD for
financial datum (“sales”, “earnings”, etc.), and $ for an
amount of money or $/s for an amount per share. It starts
running at the beginning of the press release. The Continue
state is both the accept state and a hook for optionally
going on to look for additional relations later in the article.

The goal of this network is to find the first (and
invariably the most important) earnings report relation in
the press release. Somewhat surprisingly, it correctly
identified all of those relations in the small set of press
releases; but of course this is a case of testing on the
training corpus, a well known fault that makes any result
suspect. Notably, it failed when I hand simulated it on the
very first earnings press release I saw while preparing for
this paper. It does not recognize the sequence FD - Q, as in
“Earnings for the fourth quarter, 1996”, which was the
dominating pattern of such information in that article.

This is only an anecdotal result, since it was run on a
minuscule corpus as part of a very short-lived project, and
additional complexity would certainly be needed for broad,

robust performance. We can get a glimpse of some of that
complexity by considering the root of the problem with the
failure to get “Earnings for the fourth quarter, 1996”. The
problem is the assumption, built into this initial design,
that the phrasal constituents will appear in a fixed order. It
is a major failing, and would only be exacerbated if we
moved from English to a language with free phrase order
where we could no longer even depend on syntax to
stipulate most of the ordering.

The motivation behind the use of a fixed order was to
avoid false positives (crucial in any commercial applica-
tion). In the earnings reports genre, virtually every sentence
that announces new earnings figures will include a trailing
adjunct that gives the results for the comparative time
period. The connectives that indicate that a comparison is
being made are one of the elements of this genre that varies
widely among different authors, while the phrases in the
adjunct are virtually identical to those in the primary
announcement clause. Since this means that we want to
avoid needing to know anything about the connectives,
insisting on seeing the phrases just once and in the
stipulated order is a way to reliably get the positive
announcement while avoiding the comparison.

The obvious fix in this particular example is to create
two different paths to the state that currently follows FD,
one for each of the orderings of financial-item (‘earnings’)
and time-period. This style of fix (add more paths), when
extended to its logical conclusion, takes us out of the
domain of transition networks into a ‘check list’ style of
analysis, where the ordering of the phrases is less indicative
than just their presence. That is a quite different algorithm,
but a reasonable one to explore, and it keeps with the
theme of this line of work: emphasise the relative uni-
formity of the within-phrase patterns as compared with the
clausal and sentential patterns, and look for patterns in the
association of phrases that are reliably indicative of the
relations we would have found if we had been able to do a
full analysis of the entire text.

The greatest problem in any phrase-only approach is
accurately bounding the region of text within the phrases of
the pattern have to occur—a problem that never arises in a
conventional full analysis. There are shallow techniques for
accurately identifying sentence boundaries with only
minimal lexicons (principally of abbreviations) that might
be sufficient, but this remains to be explored.

Continue / Q

Q

C, Y, $, $/s, fd

FD $ $/s

Continue

Figure 1: A network for extracting earnings report data

AAAI Spring Symposium 6 session: Natural Language Process for the WWW

2.2 Alternatives to POS
Given a semantic grammar, there is no particular need for
knowing the syntactic part of speech (POS) of a word since
its role(s) in the grammar will be dictated by the semantic
category(ies) it falls into rather than its syntactic categories.
On the other hand, the vast bulk of the text one would like
to process on the Web and elsewhere is in subject domains
for which one does not have a semantic grammar available
and should not expect to have it given the considerable
labor and skills involved in writing such grammars and
their attendant conceptual models.

That fact not withstanding, there is a significant
amount of linguistic ‘value-added’ that can be brought to
the handling of a text without a semantic model of the
domain of information the text is in—we should be able to
do better than just viewing the text as a bag of potential
keywords accessible from a search engine.

In particular, if we can reliably parse the text into
minimal phrases, we have the beginning of a means of
bootstrapping a default semantic model of the subject by
making shallow semantic interpretations of the syntactic
relationships within the phrases: head words are taken as
kind terms, modifiers as indicating subtypes, common
modifiers like “new” or “another” providing views on the
objects, and so on. (And if we can do a clause-level parse
on top of those phrases with some reliability, then this lets
us establish relations between kinds and the actions over
them: ‘who does what to whom’.)

With such a model, we can accurately differentiate or
link segments of the text to provide derived views or to
aggregate related parts of different texts, and, given some
heuristics, we can start to identify segments as
introductions of new subjects versus elaborations of
established ones, which will aid in navigation and in the
sorting and synopsizing of the enormous number of articles
returned by broad keyword searches.

Given the proliferation of reasonably accurate
statistical part-of-speech programs in recent years (e.g. Brill
1992, Voutilainen et al. 1992, Weischedel et al. 1993), it
has come to be taken for granted that the way one identifies
phrases is by applying one of these programs to the text in
order to label each word with its POS (sometimes rank-
ordered when there are alternatives), and to then run a trivial
parser over the sequences of labels, noticing sequences like
Adj+Adj+Noun+Noun and taking those to be the phrases.

The trouble, of course, is that the phrases are only as
accurate as the underlying statistical n-gram model of POS
labeling, and this is subject to two problems. One is that
when the program is reported to have an accuracy rate of,
e.g., 95% that means that it will make one mistake in
every twenty words, and more to the point, that mistake
will be on a word that is important for the phrase
determination: a noun mislabeled as a verb or visa versa for
example; the mistake will never be in the identification of a
function word. (Words like “that” or “to”, which can serve
different grammatical functions, are an exception, and there

can be disagreement as to what label other function words
should have.)

The other, more subtle problem is that any statistical
algorithm depends for it accuracy on the amount, and also
the genre, of the text it is trained on. I had the experience of
working with a text that was tagged by a version of Eric
Brill's POS analyzer (circa late 1994), that yielded
dramatically bad results—the reason being that it had been
trained on conventional texts but was being applied to
software HelpDesk reports, and as a result did very badly
with file names, operating system versions, embedded code,
and the like, which of course had not been part of its
training text and consequently one would naturally expect
that it might not do well.

I have developed an alternative method for separating
word sequences into phrases that, in the one case where I
have been able to make a direct comparison, did just as well
as a very well regarded statistical POS program (which for
contractual reasons must remain nameless), and did this
without requiring any training whatsoever. The genre was
software documentation and the task was index construction
and the detection of actor-action relationships in order to
seed a Help system.

This method simply uses function words and
productive morphology plus a very small state machine.
That sentence, for example, plainly starts with a noun
phrase as indicated by the word “this”, and the NP is just
two words long because the third word ends in +ly and so
must be an adverb. The presence of a preceding adverb pro-
vides a disambiguator for the ‘ends-in-s’ word that follows
(“uses”) which forces the word to be taken as a verb rather
than a plural noun. A robust heuristic about verb groups
says that the only time they extend beyond a content word
head (here “uses”) is with marked adverbs; the absence of
which provides a motivation for declaring that the next
phrase starts with the word “function”. The “and” two
words later provides a reason to end that phrase.

In this method, one starts with a set of annotations
on all the closed class words in the system's vocabulary
which indicate whether a word closes a phrase just before it,
indicates that a phrase begins just after it (“and” does both),
or itself initiates the beginning of a phrase (e.g. articles,
auxiliary verbs). These annotations are appreciated during
the scan phase of the parse, and boundaries drawn
accordingly. The mean distance between closed class words
or boundary-inducing markup in the documentation corpus
was 3.2 words.

The standard class of mistakes this algorithm makes
come from having overly long phrases at those points in
the grammar of a sentence where the transition between
phrase is frequently not accompanied by a function word. In
the example sentence, the (single) mistake is to include the
word “plus” with the phrase just before it to yield
“productive morphology plus”. This is a subject / verb-
group boundary; verb-group / object is the other major site
that is prone to occurring without a definitive marker.

We can improve on the situation by seeding the
system’s vocabulary with a list of words that are known to

AAAI Spring Symposium 7 session: Natural Language Process for the WWW

only occur as verbs and those that are either verbs or some
other part of speech. (Note that we don’t need all of the
verb spelling forms since we get the regular past and
progressive (ing) form for free from their morphology. Of
course that still leaves the main verb vs. participle ambi-
guity.)

We adopt the heuristic that if the word can be a verb
then it is unless we have explicit evidence to the contrary.
A typical high frequency case is the spelling form “use”,
which the system takes to be a verb unless it appears in a
context such as “the use” or “use of”, in which case the
state machine that reads the annotations and inserts the
boundaries will overrule the default assumption. Given that
boost, the performance of this algorithm in assigning
phrase boundaries in the documentation corpus was
indistinguishable from that of the statistical POS algorithm
in the several sections of documentation that were checked.

To reiterate, the utility of this alternative algorithm
for establishing phrase boundaries is that it does not require
training. Training is always expensive. (Who would fund
the construction of an annotated training corpus for
alt.sex?) Furthermore, in a statistical system the
performance on unknown words (lowercase content words
that did not appear in the training set) is degraded compared
to known words (it drops back to the a priori probability of
noun vs. verb. vs. adjective in the same context). This
algorithm, on the other hand, can treat virtually all the
content words as unknown and still perform at a level that
is not shabby. (In the example above, missing the word
“plus”, made it effectively was accurate to one word in
fifteen). And it needs only dictionary POS data about
verbs to perform markedly better.

I would venture to say that on the Web we will see a
quite significant and ever growing body of words that are
‘unknown’ when compared to the vocabulary in, e.g., the
Penn TreeBank, and that this will be an issue as we select
shallow linguistic algorithms for processing it.

3. Summary
In this position paper I have tried to make a few

simple points. The first is that there is nothing special
about html and Web pages per se, rather it is the fact that
these texts contain markup information—a variation on
sgml—and that this is the property we should be focusing
on when we adapt the text-handling algorithms of our
parsers to the Web. By considering markup of all sorts
when we modify our designs, we will retain the flexibility
to handle semantically-loaded markup information once it
becomes more common, and will keep presentation-oriented
markup in the correct perspective as a separate kind of
information. When presentation markup is pressed into
service to indicate semantic facts, we will know to keep our
encoding of such tag patterns as separate parts of our
grammars rather than as intrinsic facts about the tags.

As part of the mechanics of handling tags within a
parser, I have pointed to the difference between tags that
label structural components of a document and those that

modify or annotate text segments to indicate how they are
to be presented or that they have been overloaded to indicate
hyperlinks (, <a>). By treating modifications and
annotations as whitespace that is invisible to the flow of
the text content, we can use the content analysis aspects of
our parsers without any modifications at all.

state of the art for coping with variations in wording
is such that we much settle for partial, graded results, and
apply a judiciously choosen set of interpretation heuristics.
We cannot expect the fully analyzed, totally confirmed
results that we can achieve in the single topic, editorially
uniform domains like those used in the MUC conferences
(e.g. short news articles announcing joint ventures or
executives changing their jobs).

I have suggested that the minimal phrase types in any
domain are an important anchor point on which we could
build a heuristic IE analysis (names, descriptive noun
phrases, standard adverbials such as dates or times,
amounts, etc.). The two-stage semantic grammar described
here has worked surprisingly well in one domain where the
text style is highly stylized and the NPs carry virtually all
of the information of interest. It has definite flaws, but
nevertheless it is suggestive of a way to approach the
problem of how to do shallow, heuristic, semantic analysis
for information extraction on corpora where the range of
variat Regarding content, I have pointed out that if our goal
is information extraction and we are going to address
anything like the full diversity of authors, topics, and
genres that the Web presents us with (rather than do
business as usual with single fixed domains and genres),
then we are going to have to look for new techniques that
will allow us to begin to cope with the enormous range of
variations in phrasing and content selection that we will
face.

There will be some regions of the Web where the
information is sufficiently simple and its presentation suf-
ficiently stylized and uniform that we will be able to write
standard IE grammars for them, especially if we include
markup tags within the grammar. Simple reports of tabular
data such as commodity prices are example.

For everything else, the ion is too large to handle
with a conventional inform-ation extraction engine.

When there is not even a grammar of simple phrases
to start with, it is still possible to use the linguistic
knowledge that is at the core of many of our NLP systems
to do a better job of analyzing a page than keyword search
engines, since we can use that knowledge to segment the
text into phrases on purely syntactic grounds. Those
phrases can then be used to improve the search, to allow
the text to be organized into sections by topic continuity,
to provide good indexes automatically, or even to provide
the basis for a semantic domain model once the relation-
ships implied by the organization of the words within the
phrases has been reviewed and augmented by a person.

While the customary way to decompose a text into
minimal phrases is to use a statistical part of speech (POS)
analyzer, I reminded the reader that the results from such
systems are only as good as the training data they have

AAAI Spring Symposium 8 session: Natural Language Process for the WWW

received. Annotating texts by hand to create this data is a
grueling task, however, and one that is not done cheaply.
The enormous range of genres and subject matter on the
Web make it unlikely that the data needed for an accurate
assignment of POS will always be available, with an
attendant degredation in the performance of statistical sys-
tems.

I have described an alternative scheme for identifying
the phrases in a text that does not require training, just the
construction of a simple grammar of how the close-class
words of the language indicate where phrases begin and end.
Just using that information alone, this algorithm runs at
better than 80% accuracy. (Though it should be noted that
this was measured on professional documentation, perfor-
mance on markedly different genres (chat rooms or mailing
lists) may be quite different.)

If the knowledge of close class words is augmented
with information that can be obtained from a dictionary
about whether a word is always or sometimes a verb, then
the performance of this alternative, non-statistical algor-
ithm for delimiting phrases was indistinguishable from that
of a well-regarded statistical system. This being the case, I
believe it holds significant promise, and might go a long
way towards allowing us a foothold in the application of
strong, linguistically informed natural language processing
techniques to the World Wide Web.

4. References
 Brill, E. (1992) "A simple rule-based part of speech tagger"

Proc. Third Conference on Applied Natural Language
Processing, ACL, Trento, Italy.

McDonald, D. (1992) "Robust Partial-Parsing through
Incremental, Multi-level Processing" in Jacobs (ed.)
Text-based Intelligent Systems, Lawrence Erlbaum, pp.
83-99.

McDonald, D. (1993) "Internal and External Evidence in the
Identification and Semantic Categorization of Proper
Names" Proc. ACL Workshop on Acquisition of Lexical
Know-ledge from Text, June 21, 1993, pp. 32-43.

Voutilainen, A.; Heikkila, J.; and Anttila, A. (1992)
"Constraint Grammar of English", Pub. No. 21, Univ. of
Helsinki, Dept. of General Linguistics.

Weischedel, R; Meteer, M.; Schwartz, R; Ramshaw, L.; and
Palmucci, J. (1993) "Coping with ambiguity and
unknown words through probabilistic models"
Computational Linguistics.

