
1

In Mind & Machines (4) 59-73. A special issue dedicated to the semantic representation
used by running natural language understanding systems, edited by Stuart Shapiro

‘KRISP’
a representation for the semantic interpretation of texts

David D. McDonald1

November 1992

Abstract
KRISP is a representation system and set of interpretation protocols that is used in the

Sparser natural language understanding system to embody the meaning of texts and their
pragmatic context. It is based on a denotational notion of semantic interpretation, where the
phrases of a text are directly projected onto a largely pre-existing set of individuals and
categories in a model, rather than first going through a level of symbolic representation such as a
logical form. Semantic interpretation in Sparser is fully compositional, with each rule of syntactic
form incorporating either a direct reference to the corresponding semantic object or an
instruction for its access or construction in terms of the denotations of the rule’s immediate
constituents.

 KRISP defines a small set of semantic object types, grounded in the lambda calculus, and
supports the principle of uniqueness, whereby there is only one representation of every distinct
entity rather than several sets of descriptions requiring unification. It supplies first class objects
to represent partially-saturated relationships, such as seen in conjunction reductions and even in
simple terms like foreign (e.g. is it relative to Japan or the U.S.?), which facilitates discourse
history searches for the missing information. KRISP supports online subtyping of categories
when new descriptions are seen, and separates the manifestation of new combinations of
categories in a given individual from the reification of such combinations as distinct domain
types.

KRISP is being used to develop a core set of concepts for such things as names, amounts,
time, and modality, which are part of a few larger models for domains including Who's News
and joint ventures. It is targeted at the task of information extraction, emphasizing the need to
relate the entities mentioned in new texts to a large set of pre-defined entities and those read
about in earlier articles or earlier in the same article.

2

1. Introduction
To understand a text, a person must find a relationship between the elements of the text and

her model of the entities in the world. The process of finding this relationship engages a person's
knowledge of their language, their semantic conception of the world, and their pragmatic
appreciation of the situation they are in. All of this, including much of their syntactic knowledge
of language, is mediated by the representational system that they employ; indeed, it is arguable
that it is a model couched in this representation that is the actual target of the understanding
process. Given this assumption that the proper domain of interpretation for texts by people is a
mental model rather than the real world, we have to assume that the relationship of this model of
the world in the speaker's mind to the actual world must be mediated by other sorts of processes.
One might study these by research on real, situated robots, but probably not just with research
on the semantics of natural language.

To study the possible nature of this representational system using the tools of artificial
intelligence, we presuppose that the actual system that people use can be emulated by a compu-
tational artifact—the subject of this paper. Then, in order to provide a context in which an
implemented language understanding process can function, we construct a (small) world model
and populate it with a set of individuals, categories, and relationships appropriate to the subject
matter of the texts that are to serve as the input.

We are not, for present purposes, going to go further and incorporate into this architecture
an artificial speaker/hearer who would appreciate the consequences of what is understood and
then act accordingly, and we will not even consider here any of the processes for generating new
texts from this model (summaries, explanations, etc.), though the representational system and
world model are specifically designed for facilitate text generation as summarized below.2 We
will assume instead that the properties of the representation we are proposing and its utility can
be sufficiently demonstrated by considering only the process of recovering the projection of a
text onto the speaker's world model, and the limited, text-based reasoning procedures this entails.
In any event, this is the only portion of the cognitive architecture that we have implemented at the
time this paper is written.

KRISP (pronounced “crisp”) is the result of a long-standing body of work on efficient
representations for language generation. One of the goals of this work is that the representation
should facilitate a bi-directional statement of the form-meaning relationship, where the same
rules in the same notation can be used both for parsing and generation (perhaps with the
mediation of a compiler so that the runtime structure of the rules is efficient); see McDonald
1993. The first substantial development and implementation of KRISP is as the target semantic
representation of the language comprehension system, ‘Sparser’ (McDonald 1992a). Sparser3

is a deterministic, bottom-up chart parser that employs a number of different parsing techniques,
including finite-state recognizers, context-free and context-sensitive phrase structure rules, and
heuristic search based on patterns of closed class words and the semantic type of isolated
constituents. (“KRISP” is an acronym for “Knowledge Representation In Sparser”, which, if
prosaic, does reflect the fact that the two systems were designed to operate with tight integration.)

KRISP falls into the intellectual tradition of the ‘KL-One’ family of languages for knowl-
edge representation (see, e.g., Brachman & Schmolze 1985, MacGregor 1991). Like them, it is
based on the notion of structured conceptual objects, with a strict discipline on how information
may be inherited through a taxonomic lattice. It differs from them in de-emphasizing term-
classification as the basis of what concepts there are and how their relationships are distributed,
favoring instead techniques that allow concepts to be built up compositionally from the phrases
found in actual texts. It also puts more emphasis on the representation of particular individuals
and partially saturated relations, along with a {{new}} conception of how ‘role’ relationships
should be construed—{{one that permits variations in perspective to be factored out from a
common body of information}} and gives the frame–slot–value relation its own type as a first-
class entity.

3

This paper will move from motivations to definitions to examples. The first goal is to
explain why one should be developing a yet another new representation after now more than
three decades of work in the field. To do this, we first set the scene by appreciating what any
representation must be like in order to support the efficient semantic interpretation of texts, and
then move to the principles that underlie KRISP's design, gleaned from our experience in trying
to adapt older representational formalisms to the task of natural language generation.

Following this introduction we will lay out KRISP's object types and the rationales behind
them (§2.1). We then get to the heart of the matter by looking at the ‘protocols’ for KRISP's
use in semantic interpretation—its choice of denotations for the various classes of syntactic
constructions and their composition (§3). These sections will include several examples of
semantic problems in actual texts and how the machinery that KRISP supplies simplifies their
solution. We will close with a summary of where this ongoing research stands.

1.1 Fitting the representation to the task
Natural language understanding is a very particular task; its representational system should

be equally particular if the task is to be done efficiently. Representations developed for other
purposes: robotic motion planning, temporal reasoning, even plan recognition, are unlikely to
provide the needed ‘notational efficacy’ as defined by Woods (1987). Woods’ desideratum that
the form and primitive operations of a representational system be designed to suit the processes
that will use them is often overlooked in representation research since much of this research
focuses instead on just the expressive power of systems and their logical properties in facilitating
general reasoning.

Language understanding, however, is not general reasoning, especially since what we are
ultimately studying is the psychological process engaged in by people. Rather it is an encapsu-
lated, fast, mandatory, and unavoidable automatic process that is in the same class, psycholog-
ically, as human vision or walking (as contrasted with ‘central’ processes such as playing chess,
deciding who to vote for, or teaching a course); see, e.g., Fodor 1983, Marslen-Wilson & Tyler
1987.

Given this specificity, we should look for a representation whose formal properties as a
computational system are a close fit to the requirements of the process of understanding a
text—of going from the presentation of a text's form as a time-sequence of sounds or ortho-
graphic characters to the recovery or construction of mental objects representing the individuals,
categories and relations it conveys. We thus expect the representation to be sensitive to the way
the information in a text is aggregated into chunks, the patterns in which it is structured by
syntactic relations, and the time-course over which it becomes available.

Sensitivity to the way language conveys information carries over into the assumptions one
makes about how speakers conceptualize their knowledge. Some conceptions can sustain an
online mapping from text to semantic entities, supplying the counterpart of each word or
syntactic phrase as soon as the parser forms it; others have to wait until a number of phrases or
even entire sentences have accumulated before expressions in their notation and with their
primitives can legitimately be produced.

The possibility of principled accounts of how people conceptualize their
knowledge—model their world—is largely neglected in studies of representation, especially in
artificial intelligence. This is not surprising since if one is building a system that reasons in
isolation there is no obvious external rationale for why one set of primitives and relations should
be selected over an alternative. By contrast, systems in robotics or vision have more principled
models because the real-world physics or geometry of the problem provides the needed external
rationales.

By the same token, when we look at accounts of the conceptualizations underlying people's
use of natural language, the strongest and most principled work that we see is tied strongly to the

4

structure of language—something concrete and relatively accessible to our study, while the
mental entities that constitute meaning in the mind are not (e.g. Talmy 1987; Jackendoff 1983).

To arrive at a principled account one needs to begin with some broad assumptions, for
instance whether there is to be only a small number of primitives (emphasizing common sets of
inferences) or an arbitrarily large number (emphasizing their unique qualities and leaving shared
inferences to a different mechanism). Such fundamental choices then have to fit within a
governing philosophy whose purpose is to establish how differences in possible conceptual-
izations are to be adjudicated. This in turn has to be coupled with a set of protocols that spell out
the particulars of how the concepts are to actually be mapped to texts—semantic interpretation,
given all of the various phrasal types and grammatical relations that the language supports. If the
classification of these linguistic types is well suited to the task and its processing algorithms,
then the choice of conceptualizations—the deployment of the representational system—has a
good chance of being both coherent and effective.

1.2 Principles from Language Generation
Natural language generation systems are usually designed as interface components. As

such, the generator4 is linked to some knowledge based system—the speaker it is producing
texts for. This speaker maintains a model of its world couched in some representation. The
model is a body of information—what the speaker knows, and it is organized into units of
various types as dictated by the representational system. These units are passed to or selected by
the generator and form the basis of the texts it produces.

Some of the units represent individuals. For example a model of executives changing jobs
such as that required for thinking about a news source like the Wall Street Journal's “Who's
News” column will initially include certain well-known people and companies, a set of particular
titles, a calendar of particular times, etc. and it will learn about a great many other individuals in
the course of reading articles from the column.

Other units will represent the concepts or, as I would prefer to say, the categories that
define the speaker’s very notions of ‘people’, ‘companies’, ‘times’, etc. and provide the basis
by which individuals—the members of the classes defined by these categories—are recognized
and manipulated. The model will include categories that represent generalizing abstractions over
the concrete kinds and relations directly exhibited in the language. These capture common
patterns among units, such as the notion of an agent or the fact that organizations of all sorts
define a set of roles taken on by the people in them, and that these roles are given conventional
names (‘vice-president’, ‘student’) and participate in a common set of syntactic constructions.

The relationship between such units and the generator’s knowledge of the kinds of texts it
can produce is usually established by a set of mapping tables that act as links to the linguistic
resources appropriate to their realization: specific words, subcategorization frames, subsequent
reference criteria, etc., possibly involving several intermediate levels of representation. The
generator's task is to utilize these tables to take a set of units selected from the speaker's domain
model—the speaker's representation of the information it wants to be communicated—and
produce a coherently organized, cohesive and grammatical text that realizes that information.

Historically, the difficulty has come in the fact that in practically every generation project,
the representational system that the speaker used was developed for a purpose other than
generation. Experience has shown that in the preponderance of cases these representations had
an ontologyl and set of conceptualizations that were at odds with what generators require to work
efficiently. It is probably not an accident that the generators that have historically produced the
most natural and fluent texts were also the ones that developed their own systems of knowledge
representation.

As a consequence, generator designers have had to go to great lengths to reformulate the
units of the speaker’s model into something that (1) was a closer fit to the way information is
deployed in a text, and (2) provided more options for reorganizing how the information was

5

distributed so that it could be accommodated to the differing contexts encountered in fluent
discourse. There would be no problem if every unit presented to the generator for realization
was isomorphic in structure to the text it was intended to produce; but that is rarely the case.
Even in the instances where there is one plausible text with an isomorphic structure, most
representations do not have the flexibility to reconfigure their units so that a direct realization is
also possible for the variations on that text that will be dictated by varying discourse contexts.

Rather than catalog a set of deficits with particular systems and representations, we will
present the conclusions of our experience as a set of principles—desiderata for a
representational system that is to support efficient generation.

1. The speaker’s knowledge—its model—should be set up as an inter-
connected set of relatively small units.

By making the amount of information contained within the primitive units small, seldom
larger than a single word (or fixed-phrase) or a simple one-argument relation, we maximize the
possibilities for rearranging the assemblage of units selected for an utterance in order to best fit
the discourse context. In different contexts what the audience already knows will vary, and
consequently what should be omitted from the utterance as redundant or should be given special
salience because it is unusual must vary as well. To give a simple example,5 consider this text,
excerpted from an newswire story on a joint venture.

“The new firm will be 50 percent owned by Takarabune, 45 percent by Merciries and
the rest by a Japanese advertisement concern, Cybac Co., the company said.”

We all know, as speakers of English, that “45 percent” refers to a ‘45% ownership of the new
firm’, yet that information is not given explicitly but must be inferred from context, just as a
generator must appreciate the redundancy and the availability of that reduced construction in
producing the text in the first place. If the units are large (e.g. the equivalent of simple clauses)
the generator will have to either be satisfied with disfluent texts or construct its own
decompositions of what the speaker supplies.

2. The structure and content of every unit of information is immediately
accessible.

This is an admonition for the use of typed structured objects as the basis of the representa-
tion, rather than expressions whose content and inter-relationships can only be determined by
scanning them and remembering what was found (such as the typical representation of a logical
form). It continues the theme of facilitating decomposition and rearrangement of an utterance's
speaker-internal representation because it makes it possible to retain all of the options about how
a unit will be realized while its position in the text is still being determined.

The phrase “45 percent” above should be the realization of a (complex) unit meaning ‘a 45
percent portion of the ownership of Taiwan Takarabune Confectionery Ltd.’ (the “new firm”),
and not just a simple percentage. By retaining the full information all the way until the unit’s
context has been established, the generator has the option of giving it other realizations such as
“45% of the firm” or “Merciries has a 45% stake”. (Similarly a parser, when confronted with
any of those phrasings, should interpret all of them as the same full unit.)

3. There is a first-class object type corresponding to every class of syntactic
category in the language.

The notion of a first class object comes from the study of programming languages where it
refers to those objects that can be returned as the value of functions. Here the focus is on what
elements of a representational system can be factored out of the context they are part of and still
retain their identity. In the usual notation for the predicate calculus, the letters representing
variables are not first class, since they gain their meaning only by being in construction with a
particularly placed quantifier and their instances in a formula’s terms. In KL-One, roles are not
first class since there are no instances of the relationships that roles define apart from their links
to particular concepts.

6

A key concern here is the representation of phrases that present only partial information.
Such phrases are ubiquitous, ranging from conjunction reductions to single words: the word
overseas, for example, has a different denotation when the article is from a Japanese news
agency versus an American one. The generator needs to know, as it considers various
decompositions of the information it has selected, whether the units it factors out can be realized
on their own or not. By having first class objects to represent relationships that are only partially
saturated and linking them to the linguistic constructions for partial information, a generator can
state the constraints on possible decompositions easily.

When this principle is considered from the perspective of parsing, it is the problem of being
confronted with partial information and needing find a denotation for the phrase. If the
representation provides a first class object to represent the state of knowing only part of what a
phrase refers to, then the manipulation of that object to recover the rest of the information from
context or through defaults is markedly simpler to carry out.

4. All domain entities have a unique representation in the model.
This is the uniqueness principle that plays a central role in the design of the SNePS

representational system (e.g. Maida & Shapiro 1982). Its implications are wide-spread.
Consider, for example, the paragraphs below, excerpted from a Wall Street Journal “Who’s
News” article from February 14, 1991.

“After almost nine tumultuous years, George L. Ball resigned yesterday as
chairman and chief executive officer of Prudential-Bache Securities Inc., the nation's
fourth-largest securities firm.

Mr. Ball's departure signaled that Prudential Insurance Co. of America, the
brokerage firm's parent, had run out of patience with Mr. Ball's quest to turn the unit
into a Wall Street powerhouse. Amid mounting losses, Prudential had steadfastly
backed the 52-year-old chairman in one failed foray after another.”

This text has several subsequent references in it: “Mr. Ball's departure”, “the brokerage
firm”, “Mr. Ball ”, “the unit ” “Prudential ”, and “the 52-year-old chairman”. A generator
must know when it is realizing a second instance of an entity it has already mentioned, and by far
the easiest way to do this is to notice that the representational entities for the two instances are
the identical object, rather than attempting to match descriptive expressions.

From the parsing standpoint, this principle implies first of all that the output of the under-
standing process should be a set of objects rather than expressions describing them. We need
this independently of other considerations since many of the entities being referred to are likely
to already be known—Prudential Insurance for example. A descriptive output would miss the
fact that the entity referenced in the text was one it already knew unless it went through an
additional reconciliation process. The timing of this process might be of little concern when
parsing isolated sentences, but extended texts must be understood incrementally (Mellish
19XX). For this reason Sparser recovers the denotations of phases online as they are parsed.

The uniqueness principle requires a parser to make the denotation of a subsequent reference
be the very same representational entity that it looked up or constructed for the initial reference.
This will lead to including a set of cross-indexes among entities and their relations so that, for
example, the parser can look up what ‘chairmen’ it has already seen in this article, and finding
only one conclude that the information ‘52 years old’ is to be understood as providing
additional information about Mr. Ball rather than being an index to select between various
chairmen of different ages.

One other point should be made here that applies only to parsing. In generation, the process
starts with complete information about what object types there are in the model and how they are
interrelated. A parser on the other hand will have only the basic domain types corresponding to
its core vocabulary. It will need to be able to construct new domain types compositionally as it
sees new descriptions and especially new compound definite references, allowing it to construct

7

a type for, e.g., Japanese companies on the fly rather than needing to wait for human
intervention.

To summarize this, the reason, practicalities aside, why we have developed a new representa-
tion, KRISP, rather than taken one off the shelf, is that the older representations we are familiar
with are deficient on one or more counts given this set of principles. We want to use a
representation for the target of parsing that is the same as we would use as the source of
generation—otherwise it is impossible to develop a bi-directional treatment of linguistic rules,
which is an important long-term goal. In particular, we see weaknesses in the available
representations for the interpretation of phrases that express only partial information, and an
insufficient number of first-class objects, especially for concept-role-value relationships. This
deficit makes it difficult to preserve the uniqueness principle when dealing with reciprocal
relationships where the differences in expression appear to follow from differences in
perspective rather than in the information conveyed.

2. KRISP’s representational system
As a representational system, KRISP embodies a theory of how information is structured in

a natural language text. This is a hypothesis about the kinds of entities that texts denote and the
semantic relationships by which the linguistic structure of a text maps to a model of the
information it contains.6 There are, of course, two different levels involved: what we might call
the ‘domain’ level, where we are representing both the particular instances and the general kinds
of people, events, moments, amounts, etc. in profusion that a text can be talking about; and the
‘epistemological’ level (following Brachman 1979), where we spell out the kinds of
representational objects by which we are to capture the information a text supplies at the domain
level.

KRISP defines a set of object types at the epistemological level along with a set of
protocols that govern how the syntactic phrases of a text are to be interpreted in terms of them.
This provides a framework to govern how models of the world at the domain level are to be
designed, while leaving open the substantive issues of what distinctions in kind or subtleties of
relationship are implied by the particular usages one finds in texts. In the next section we will
introduce these object types, and look at their corresponding structures in the lambda calculus.
Their rules of formation will be taken up in §3 since they are the rules of semantic interpretation
of texts and most objects are introduced into the model and gain further properties through the
interpretation of texts rather than by, say, the instantiation of prototype concepts.

2.1 Ontology
At its lowest level, a model in KRISP consists of a set of objects—the ‘units’ of informa-

tion that the model contains—that are linked together by pointers. The units are first class
objects; the pointers are not. Units are structured, with named fields containing the pointers from
them to other units. Formally, pointers may be viewed as access functions taking a unit as their
single argument and returning the unit or list of units to which they point.

The fields that a unit has are determined by its type. KRISP defines four primary types of
units in its epistemological level: individual, binding, variable, and category, as well as two types
of units that are blends of the primary types: derived categories and partially saturated relations.
Everythis in a KRISP model is of one (and only one) of these types.

An individual is roughly comparable to Montague's ‘e’ type, KL-One's ‘nexuses’, or
Classic's ‘individuals’.7 Individuals are used to represent particular things in the world, concrete
or abstract, rather than kinds or generics. They are the typical denotations of the maximal-
projections of the major syntactic categories, i.e. noun phrases and most clauses. An individual

8

has a domain type consisting of one or more categories (e.g. transition event, person, retirement,
title, unicorn), and in accordance with its domain type it can enter into bindings with (stand in
relation to) other individuals (‘George Ball is the one who retired’, ‘the positions (he) retired
from were chairman and CEO’).

Relationships between individuals (and other types of entities) are represented by units of
type binding. Bindings are three-tuples consisting of an individual, a variable, and another
individual. Bindings are sanctioned by the variables defined by categories. We will talk in terms
of ‘binding an individual to a variable’

For example ‘George Ball is the one who retired’ would be denoted by a binding involving
(1) the individual that denoted this instance of the category retirement (i.e. it would also include
the position he left, the time, etc.; see §3.1 below), (2) a variable defined by that category, say
with the name ‘agent’, and (3) the individual denoting Mr. Ball.

These tuples may be thought of as directed, labeled links going from the first individual via
the variable (the label) to the second. Broadly speaking, bindings are the frame–slot–value
structures of standard frame systems, with the difference that in KRISP we are always dealing
with individuals rather than kinds. In KL-One the closest analogy would be an individual
concept, one of its roles (the analog of the variable) and a second individual concept, the slot's
value.

The key difference from these alternative representations is that in KRISP a binding is a
first-class object with an existence independent of and separable from the individuals that
comprise it. This was not the case in KL-One (except at its seldom-used ‘meta-level’), and is
rarely the case in the implementation of frame systems; for them these tuples are only implicit in
the structures defined by concepts or frames. By contrast, while KRISP’s bindings point to and
are pointed to by the units that comprise them, they are distinct units and provide the denotations
for a number of linguistic constructions, including most copular clauses and the grammatical
relationships that tie phrasal heads to their complements and adjuncts.

The relationships into which an individual can enter, and with them the variables that define
the domain types of the bindings that represent those relationships, are determined by the
categories that define the individual's type. An individual can and usually will have more than
one category in its domain type. A category corresponds to a predicate; the airity of the predicate
establishing the number of variables associated with it. Variables are local to the category that
defines them, in the sense that if we were to notate them using names (‘x’, ‘agent’, ‘members’)
we could substitute other names without changing their meaning (This is ‘alpha reduction’ in the
lambda calculus). Categories represent kinds. They are the denotations of, among other things,
most phrasal heads, i.e. common nouns and verbs.

Part of a variable’s definition is its value restriction, a category or categories stipulating the
types of individual that can be “bound” to that variable. Categories are organized into a
taxonomic lattice on the basis of what variables they define and the restrictions on them. The
notion of subsumption is applicable to this lattice, in that an individual whose type includes a
relatively low category, say ‘retire’, will also satisfy all of the categories that ‘retire’ is a
specialization of such as, say, ‘agentive-event’. Any variable that is defined by ‘agentive-event’
or the intermediary categories (‘transition’, ‘job-change’, and ‘leave-position’) can be bound by
the individual, and the variables may have their value restrictions specialized when their binding
categories are specialized, such as shifting the restriction from a general (higher) category like
‘agent’ to a specific (lower) category such as ‘person’.

All categories are primitive, which is to say that their position in the lattice does not provide
necessary or sufficient criteria for their satisfaction. Indeed, the taxonomic lattice does almost no
work in KRISP since the function of categories is to supply the denotations of certain classes of
words.8 Any category one might propose to define that does not have a corresponding lexical
item or suitable phrase or grammatical relationship, or that could not be formed out of such by
abstracting their complements would be highly suspect.

9

One class of exceptions to the relevance of the taxonomy is the formation of an analytic
category through the composition of categories denoted by linguistic primitives (e.g. words) with
generic morphological or grammatical elements such as plural, past-tense, modals, negation, etc.
Additionally, many descriptive N-bar phrases (see prior footnote) want to be treated as categories
since they usually do not introduce individuals in a text (unlike names or clauses) but rather
categorize existing individuals or add attributive properties. The denotations of such phrases are
usually partially saturated individuals rather than categories however.

Since any verb or noun could in principle undergo most of these compositions, potentially
resulting in a drastic multiplication of the number of categories in the model, a mechanism is
provided whereby the ‘composite category’ can be represented implicitly by having a list of
categories in an individual’s type field.Thus the individual representing a phrase like 17 vice
presidents would have two categories making up its type: ‘title’ and ‘collection’. An intriguing
question for further research is whether there is some semi-automatic way to determine which of
these compositions should be reified as literal categories, possibly by looking at the pattern of
terms used in definite references.

2.2 Correspondences in the lambda calculus
One type remains to be introduced, the lambda-form; but before doing that it will be best to

describe the relationship of KRISP's types to their foundational computational reference
system—the lambda calculus, which we will do by way of an example.

Consider the formula
advisor/ee(Chomsky, Ross)

It predicates of two logical constants, Chomsky and Ross, that they stand in the relation of
thesis-advisor–to-student (which happens to be a true fact in this world for Noam Chomsky and
Haj Ross). This formula corresponds to an individual in KRISP, one whose type is the category
‘advisor/ee’, and which has two bindings, one tieing it to an individual of type person with name
Noam Chomsky , and another tieing it to a second person individual with the name Haj Ross.

The predicate ‘advisor/ee’ can be seen as a function of two arguments, which we can
construct in the lambda calculus by naming variables corresponding to the parameter positions
those arguments will take on. It is convenient to select as the names of these variables the name
of type (satisfying category) they are restricted to.

l professor . l student . advisor/ee(professor, student)

The corresponding KRISP category has two variables in just this sense, and has the same
semantics as this function—it forms an individual (the original formula) when both of its
variables are bound to individuals of the appropriate type.

The formula is intended as the representation of texts like these and others:
“Chomsky was Ross’s advisor”
“Ross was Chomsky’s advisee”
”Ross was Chomsky’s student”

Leaving for later the question of the past tense and the varying vocabulary in those texts, we now
ask what is the denotation of the phrase Ross’s advisor? In KRISP it is an object of type
lambda-form, i.e. an object corresponding to the partially reduced lambda calculus formula
shown below in two different formats. In the first, the reduction has gone through; in the second,
the reduction has been set up but we have yet not actually done the substitution of the constant
for the variable. Note that the function application indicated by the parenthesized expression in
the second instance of the formula demonstrates the semantics of a KRISP binding—bindings
are the assignment of an individual to a particular variable in a specific formula.

10

l professor . advisor/ee(professor, Ross)

l professor .
 (l student.advisor/ee(professor, student)
 Ross)

A lambda-form is a unit that is part way between a category and an individual. In a lambda
form some but not all of a category's variables are bound, and a record is kept of what variables
remain open. In the course of a parse there is often a stage where the denotation of a phrase in
isolation (Ross’s advisor) is a lambda-form. Then the larger constituent of which that phrase is a
part (e.g. Ross’s advisor was Chomsky) adds information that provides the binding of the open
variable(s), yielding an individual now that the relation (‘advisor/ee’) is fully saturated.

2.3 Notation
The definition of categories and the rules of formation that take categories into individuals

are intimately caught up with the definition of a grammar for some topic, and will be discussed in
the next section. Here we will simply look at the units from the example just given, showing their
fields and the pointers that link them together. In the process we will illustrate how KRISP's
representation captures the fact that all of the example texts encode the same information.

All objects, by warrant of their status as representational units, have fields for the mundane
information that makes a representational system practical to use in a large, commercially-
oriented program. There is a link to a symbol that acts as the unit's name, and one to a Lisp plist
for record-keeping information such as when the unit was created and what file its definition is
in. Beyond that the fields are specific to the different types.

A category has one germane field, its link to its variables. Below is the standard printed
representation of a category. Following the Lisp conventions for structured objects, we do not
actually show the links, leaving them implicit in the positional notation.

#<category advisor/ee
 :variables (#<variable advisor/ee.professor
 :category #<advisor/ee>
 :v/r #<category professor>>
 #<variable advisor/ee.student
 :category #<advisor/ee>
 :v/r #<category student> >) >

A unit, as an object in a model, is printed within angle brackets prefixed with a sharp sign
(“#<…>”). Using the sharp signs as a guide, we see that the expression above involves five units.
Just following the initial bracket is the name of the units’ type; when it is obvious from context
what type of unit we are dealing with this may be omitted; sometimes only the units’ symbolic
name is used: #<advisor/ee>. The pointer from the category to its two variables is indicated by
the field named :variables (this is the access function), immediately followed by the object
pointed to, here a list of the two variables.

A variable has two fields: one holds a pointer to the category that defines it; the other a
pointer to its value restriction (:v/r) the category (or list of categories, interpreted as an ‘or’)
that restrict what it can be bound to. The symbolic name of a variable is the name of its category
appended to the designated name of the variable, separated by a dot.

11

A binding has three fields: one points to the individual whose type includes the category
that owns the variable; the second points to that variable, and the third to the individual bound to
it.

#<binding
 :body #<individual advisor/ee-1>
 :variable #<variable advisor/ee.professor>
 :value #<individual person-1> >

There is more convenient print form for bindings, shown below. The individual sanctioning
the binding is given by its name (a generated symbol based on its first category and a number)
separated from the variable by a dot; and then an equal sign and the individual being bound.

#<advisor/ee-1.professor = #<Chomsky>>

#<advisor/ee-1.student = #<Ross>>

An individual has three fields. The first, :type, points to the list of the categories that
collectively define the individual’s domain-type. The second, :binds, points to all of the binding
where the individual is the one that owns the variable. The third, :bound-in, is the inverse case:
it points to all of the bindings where the individual is the one that is bound. The examples show
other short-cut notations such as the use of the value of a name variable to stand for the
individual with the name (#<Chomsky>), and the use of italics and double quotes to indicate that
the value is a ‘word’ one of the a system primitive types in Sparser.

#<individual advisor/ee-1
 :type (#<category advisor/ee>)
 :binds
 (#<advisor/ee-1.professor = #<Chomsky>>
 #<advisor/ee-1.student = #<Ross>>)>

#<individual person-1
 :type (#<category person>
 #<l employment/position #<title professor>>)
 :binds
 (#<person.name “Noam Chomsky”>)
 :bound-in
 (#<advisor/ee-1.professor = #<Chomsky>>)>

#<individual person-2
 :type (#<person>
 #<l employment/position #<title student>>)
 :binds
 (#<person.name “Haj Ross”>)
 :bound-in
 (#<advisor/ee-1.student = #<Ross>>)>

It is crucial here to again point out that every object in KRISP is unique, occurring only
once in the model (‘the principle of uniqueness’, see §1.2 above). Thus the two bindings in the
binds field of advisor-1 and their repeated print-forms in the bound-in fields person-1 and
person-2 are the identical objects. Similarly, the individual #<Ross> within the advisor/ee binding
of person-2 and person-2 itself are the same object—a recursive reference made less obvious by
the use of the two different printing styles.

The idea that this relation between Ross and Chomsky is the same fact regardless of the
perspective from which it is seen is captured structurally in KRISP by having the individuals
representing the two people point to the identical binding objects. This is impossible to state
structurally in a KL-One -like representational system because roles (their equivalent of
KRISP’s variables) are not first class objects in these systems. Rather the ‘advisor-of’ role, let

12

us say, from the KL-One individual concept for Chomsky to the one for Ross is a different
object from the, say, ‘advised-by’ role from Ross to Chomsky. We view this capacity to extend
the uniqueness principle to frame–slot–value relationships to be a significant advance in
knowledge representation design.

A lambda-form has four fields: the three fields of an individual and an additional field
pointing to which of its variables have yet to be bound. There are two lambda-forms shown
above in a highly abbreviated notation. Here they have taken on the role of categories in defining
part of the types of the two person individuals. Lambda-forms can do this because they share
with categories the essential property of defining variables, just as they share with individuals the
property of participating in bindings.

Note that in the lambda calculus we can create quite elaborate functions by taking a formula
that involves many predicates and function applications and then abstracting out a single deeply
embedded variable. So in this case we have taken a compound predicate: ‘an employment
relationship between a person and a object of (domain) type ‘position’ indicating a particular
title and organization’, and have construed it as a function of one variable, ‘title’, and then bound
this variable to the individual #<title professor>, leaving the other variables (‘person’,
‘organization’) open. Such a complex manipulation is warranted because English sanctions
constructions like Professor Chomsky or former President Carter, indicating thereby that even
though we know that Chomsky must be a professor at some particular institution, we are allowed
to omit that information and still have a semantically sensible text.

To recap this section, we have presented KRISP's five types of representational objects, and
illustrated how they are interrelated in a model via the pointers in their particular fields. We have
shown how these types have a foundation in the lambda-calculus; they amount to a reification of
different formula and function types. Categories correspond to predicates and define a set of
local variables; individuals are fully saturated predications; bindings reify the application of a
variable to a value; and lambda-forms correspond to partially saturated, possibly compound
formulas.

We have alluded to the protocols that map these types to linguistic entities. A name denotes
an individual, as does a phrase where all the required arguments to a given relational lexical head
have been supplied. Lambda-forms are the denotations of syntactically complete phrases that are
conceptually incomplete (unsaturated). Bindings are the denotations of most copular clauses. In
the next section we will take up the details of how these denotations are established in the course
of parsing a text.

The third aspect of a representational system, the framework that disciplines the work of a
person developing a world model for some domain of discourse, has begun to raise its head here
in the idea that we should model the relationship between a person and their title as involving the
intermediate categories of ‘employment’ and ‘position’. The rationale at work is that the
representation of related texts should reflect their shared information through the use of the
identical individuals, bindings, and lambda-forms. The vocabulary these texts use is being taken
seriously as evidence for what categories we should postulate in order to make this structure-
sharing possible.

Thus, to anticipate the next example, the fact that we can say such things as Mr. Ball used to
work for Prudential-Bache, or the positions of chairman and CEO at Pru-Bache used to be held
by the same person, is being taken as evidence that we should cluster the information in terms of
the relationships of employment and positions, rather than, say, use a single category lumping all
the variables together in a single relationship. By providing these additional categories we can
capture the commonalities between these statements and the original by literally using of the
identical units.

We are using units that contain smaller amounts of information than they might in principle,
and in so doing are allowing the full ‘retirement’ relation to be factored in different ways,

13

grouping some of the units while excluding others, all the time structurally capturing the fact that
they are indeed just different aspects of the identical information.

3. Integrating semantic interpretation and syntactic parsing
Having laid out the target representation for semantic interpretation, our next step is see how

the language understanding system, Sparser, maps a text into its terms. In doing this, our main
concern will be the general guidelines or ‘protocols’ that govern how the syntactic and lexical
forms of natural language are to be interpreted in terms of KRISP objects. At the same time,
however, something much more arbitrary, our choices of how to conceptualize particular kinds of
information, must inevitably come into the discussion. Fortunately this is a separable aspect of
the research, since one can disagree about whether, for example, there is an employment
relationship in the chain that links a person to their title, while remaining comfortable with the
representational system in which that relationship, or some alternative, is couched.

We should begin with a prècis of how Sparser works. Overall, Sparser is a one-pass parser
that takes a stream of characters as input and produces a stream of transactions on its model of
the world as its “output”. A ‘stream of transactions’ is a somewhat unusual way of talking
about what a parser produces, but it is fitting. Sparser scans entire news articles at a time rather
than single sentences, and it makes crucial use of the interpretations of early phrases in the
interpretation of later ones, especially for subsequent references to the same individuals and to
fill in information that has been omitted as redundant or inferable from something said earlier. If
Sparser were not doing semantic interpretation online as each word is scanned and each syntactic
phrase completed, such operations would be either impossible or markedly less efficient.

There are roughly four kinds of transactions between Sparser and its world model
represented in KRISP. The most common is noting a new instance of reference to an object
already present in the model. All content words and many context-specializing syntactic
constructions are already linked to their model-level counterparts as part of their definition in the
grammar; indeed, one is not permitted to write a rule for Sparser (i.e. a context free or context-
sensitive phrase structure rewriting-rule) without specifying its interpretation given the
interpretations of the constituents it composes. The other standard transactions are the
introduction of new individuals into the model, the addition of new bindings to established
individuals, and the refinement of the model's set of categories through specializations.

The parsing process begins with the buffered stream of characters, potentially taken directly
from a newswire. The stream is tokenized, recognizing known words and categorizing unknown
words in terms of their morphological and orthographic properties. These words are then entered
into a chart, where a set of parsing processes are applied, continuously producing a single set of
semantically interpreted ‘edges’ (non-terminal parse nodes), the extensions to the model, and a
discourse history as the text is processed. We can see this at work in a simple example by
looking at a snapshot of the processing of the earlier example: Ross was Chomsky’s student .

Sparser uses a semantic grammar. This means that its primary set9 of non-terminal labels
are drawn from a domain-specific vocabulary, just as the conceptualizations of its model are.
Thus for our snapshot, the proper name Ross is spanned with an edge labeled ‘person’; was is
spanned with the label ‘be’; and Chomsky's student is spanned with the label ‘student’. Note
that this three constituent sentential form is exactly the same as if we were parsing the sentence
Ross was a student —the difference between the two is reflected only in the interpretations of
their complements: the word student denotes a particular title, an individual; while Chomsky's
student denotes a lambda-form as discussed above, effectively raising the type of its head to a
level in the category hierarchy where it can stand in relation to a ‘person’ (more specifically a
person with the title ‘professor’; cf. Robert Reich is one of President Clinton's economic
advisors).

14

Completion of the verb phrase was Chomsky’s student would have resulted in a comparable
type-raising if it hadn't already been done. This is because the VP must denote a predicate, an
object with an open variable to which we can bind the subject. The composition of the subject
NP Ross results in that binding, and ipsofacto the saturation of the advisor/ee relation that the
complement NP introduced into the model, resulting in a normal individual: the individual-1
shown earlier in §2.2.

Let us review what was just described. We assumed that the individuals Haj Ross and
Noam Chomsky were already represented in the model, and could be recognized from instances
of their last names. This illustrates one protocol:

“prefer existing objects over new ones”

Similarly, the already known title individual denoted by student was referenced as the
meaning of that word, this direct association to the appropriate object in the model being part of
what it means for the system to have a word as part of its known vocabulary (along with
representing its form class, noun, and its rules for syntactic combination). This illustrates another
protocol:

“every sense of a known word is reflected in a direct link from the
word to the corresponding model object”

The phrase, Chomsky’s student, gets its interpretation in either of two ways. Either we
already understand that combination and we describe the needed type-raising lambda-form in the
statement of this rule for Sparser’s semantic grammar (i.e. the rule student ->
person+possessive student). Alternatively we deduce what the combination must denote by
searching through the value-restriction statements of the categories in the taxonomic lattice to
find the closest category with a variable restricted to be a ‘student’ and where there is also
another variable restricted to be a ‘person’ or some specialization of a person. Plainly it is easier
to already know what to do, and this is indeed one of the reasons for employing a semantic
grammar in Sparser, namely to make it possible to encode quite specific semantic relationships
by employing a set of semantic category labels that reflect the categories of the domain model.

At the verb phrase level, notice that there was no interpretation for the verb was. It did not
refer to a category; in particular it did not refer to the hypothetical two-place relation ‘isa’ that
was so often used in early versions of semantic network representations. Instead the word was
treated as a literal, with the meaning of the VP coming for the most part from the identity of its
complement. (Sparser's labeling conventions give this VP the label ‘be-student’, reflecting the
passing through of the meaning-determining information.) The same is true for the other closed-
class, grammatical function words: preposition, determiners, modals, etc., illustrating another
protocol:

“function words and other grammar-specific lexical elements (e.g.
past tense) do not have denotations per se, rather they frame
grammar rules that modulate or pass-through the denotations of their
syntactic arguments.”

Strictly speaking this is not entirely true of was since that word does contribute the
information that the relation held in the past relative to the time of speech. In some formula-
oriented treatments of meaning this is captured by treating ‘past’ as an operator. In KRISP the
analog is to add a binding—adding information to the VP's denotation without changing its type.

Similarly, other kinds of optional adjuncts such as location or more specific temporal
information (“… while he was at MIT”) are also treated by adding bindings to the individual
representing the basic relationship. The set of variables sanctioning (making sense of) such
adjuncts will be bound relatively high in the taxonomic hierarchy, in this case at the abstract
category ‘event’, reflecting the verb-like nature of ‘advisor/ee’ as a relationship situated in time
rather than, say, a spatial relationship situated in space.

15

Finally, notice that the interpretation of this sentence went directly from a linguistic surface
analysis to the denotations of the phrases in the semantic model—there was no intervening level
of analysis where the text was reformulated as, e.g., a logical expression that would only later
receive a model-theoretic interpretation once it was complete. There are several reasons for this
lack of a notion of ‘logical form’ in Sparser. The most important is the need for an online
interpretation, where the referents of early phrases are available to aid in the interpretation of later
ones. Another is that the construction of an intermediate descriptive formula seems only to
muddy the waters, obscuring the real task of identifying the entities that the text refers
to—especially considering that a great many of these entities will have existed well before the
text was ever seen, and that the point of a semantic interpretation is to link the text to these
entities, rather than to construct redundant descriptions of them. In a computational setting, a
logical form may make sense for the task of question answering, where the formula can be
readily recast as an expression in a data access language like SQL, and the model, such as it is,
consists of an external data base. It makes markedly less sense, however, when the task is
extracting information from extended texts over time, where a coherent history of the events that
the system reads about requires a carefully structured model.

4. The Discourse-history and Cross-indexing of individuals
Suppose the system already knew that Ross was Chomsky's student, which is to say that

there was an individual in the model for that particular advisor/ee relationship even before that
text was parsed. In this case, by uniqueness principle, we want the semantic interpretation of the
text to pick out the already existing individual, rather than create a new one. To do this we draw
on another aspect of the KRISP representational system: its techniques for cross-indexing the
objects in the model and its integration into the discourse history Sparser maintains as it is
parsing a text.

We will look at these techniques in the context of a more interesting example, the paragraph
given earlier about the retirement of Mr. George Ball from Prudential-Bache. Sparser’s grammar
for the Who’s News domain can handle the main clause of its first sentence (repeated below), as
well as the definite references in the second paragraph; the rest of the second paragraph is off the
topic of business executives changing their jobs and is ignored.

“ … George L. Ball resigned yesterday as chairman and chief executive officer of
Prudential-Bache Securities Inc., the nation's fourth-largest securities firm.
 Mr. Ball's departure … Prudential Insurance Co. of America, the brokerage firm's
parent … Mr. Ball's … the unit … Prudential … the 52-year-old chairman …”
Sparser maintains a discourse history, where it records what objects (KRISP units) have

been identified in the course of parsing the text. The record is added to incrementally as each
phrase, with the object that denotes it, is completed. The history records every object, and indexes
them by their position in the text: Mr. Ball thus has four instances in the history; Prudential-
Bache has three; Prudential Insurance has two; the retirement event has two; and the title
‘chairman’ has two.

The discourse history is also indexed by the objects’ domain-types, so that one can ask,
e.g., was there a previous instance of the title ‘chairman’ and what context did it appear in.
Presently the position indexes are reaped paragraph by paragraph once the parse has moved two
paragraphs ahead, and we are experimenting with specific strategies for longer distance records,
such as noting in this case that Mr. Ball is the thematic person.

As a result of parsing the first sentence, a complete retirement event, an individual, will be
recorded in the discourse history. Briefly summarizing the course of that parse, it started
semantically with the verb resigned, which denotes a category. This category reflects one
particular sense of the word resign, which we indicate informally by giving it the name ‘resign-
from-a-position’, and formally through the restrictions on its variables (its actor, the subject,

16

must be a person), and through the parsing rules written for it by which we indicate that it is
intransitive, contrasting it with another sense of the verb that is fairly frequent in business texts:
to resign debit.

The subject, Mr. Ball, is the first to compose with the verb, yielding in this case a lambda-
form, since the resign-from-a-position relation is incomplete (unsaturated) unless a position, a
title and its company, is also included. The needed position is the very next constituent, which in
this grammar gets the label ‘as-title’. Once this adjunct is added to the simple clause we get an
individual as the denotation of the whole sentence.

When a new individual is created, it is not only indexed under its primary category, but also
under a selected set of categories higher up along its specialization chain in the taxonomic
hierarchy, according to annotations included with these abstract categories as part of their
definition. (These are abstract in the sense that they do not have direct lexical realizations, but
serve instead as the locus for inferences that are common to the whole set of lexicalizable
categories that they are generalizations of.) For the present example these will include the
categories ‘leave-position’ (generalizing over quit, leave<company>, etc.), ‘job-event’ (which
adds elect, appoint, etc.), and finally ‘event’.

To satisfy the uniqueness principle, we must never create a new object where there is
already an object with the same properties already in the model. (By ‘properties’ we mean here
the object’s type, its categories, value-restrictions, and its bindings, which is about all there is to
objects in KRISP.) This means that before creating an object, we should first look in the model
for one that already satisfies the semantic interpretation rule of the phrase we are completing,
given that phrase's daughter constituents. Object identity is thus defined recursively, with the
formation of composite objects in the model mirroring step by step the formation of composite
linguistic phrases in the text.

We have now introduced enough machinery to look at the semantic interpretation of the
subsequent reference to the first paragraph’s retirement event, the phrase Mr. Ball’s departure at
the beginning of the second paragraph. The head of that phrase, and consequently the basis of its
interpretation, is the nominalized form of the verb depart. Like ‘retire-from-a-position’, this
word includes the category ‘leave-position’ among its secondary indexes in this domain. Had
the phrase been a clause based on the verb form, we would wait to look-for or create an
individual until we had seen its direct object since one can leave many things besides jobs.
However here we have a definite noun phrase—a subsequent reference to something that
appeared earlier in the text. The information about what position Mr. Ball departed from has
been omitted as redundant in this context, and we are left to reinstate that information by
following out the one concrete anchor that we do have, the reference to Mr. Ball.

After the first sentence, we got the representation below for Mr. Ball. Note that we have
changed the presentation of the bindings in this individual’s bound-in field from the way they
were shown earlier so as to emphasize the way they will be viewed here as indexes: We have left
out the mention of the person being bound (it is, after all, always the very individual holding the
binding), and we have presented more of the individual doing the binding, which is in this case
the first instance of the retirement relationship. This is not a change in the definition of the
objects, only in the perspective in the way Sparser’ semantic interpretation processes view them.

#<individual person-1
 :type (#<person>)
 :binds
 (#<person.name = #<name “Ball, George L., Mr.”>>)
 :bound-in
 (#<employment/past chairman & CEO, Pru-Bache>
 #<retire/leave-position/now chairman & CEO …>)>

The lookup in the model runs roughly as follows. If the object denoted by Mr. Ball’s
departure is already in the model then there will be a binding tieing that individual to the
individual representing Mr. Ball. We know that this individual will be the same one in both

17

instances, since semantic interpretation proceeds bottom up and left to right in step with the
parsing, meaning that Mr. Ball will receive its interpretation before either departure or the whole
phrase does.10 Thus we look at the person individual denoted by this instance of Mr. Ball (it
will be the same object as the earlier instance, we just retrieve it via a different index) and
consider the bindings in its bound-in field.

We look at the list of categories of the individuals binding the person—their domain-type,
and if one of these types satisfies the type denoted by departure then we have found our pre-
existing individual. This check is a matter of looking for a shared secondary category index, in
this case ‘leave-position’, and the same time anchor, ‘now’. The second binding in person-1’s
bound-in slot has these properties, and so in accordance with the uniqueness principle we return
the individual making that binding, which is the one denoted by the original full sentence.

5. Concluding remarks
KRISP is a practical system that has been deployed with the Sparser language understand-

ing system over the course of the last year, following on a considerably larger body of work
trying to identify just why other representational system were continually proving awkward to
use as the source for the generation of fluent texts.

As a practical system in a working parser, it has undergone a goodly amount of revision as
new problems in text were tackled. The lambda-form type, for example, is a recent addition,
developed initially to solve the problem of how to represent phrases like 17 vice presidents that
are sometimes descriptions (making them nominally categories), and sometimes names (making
them nominally individuals). Once a new type is introduced, it widens the design space available
for solving semantic problems in texts, and so can lead to cleaner treatments of long-standing
problems, such as the denotation of phrases that denote logically incomplete information.

Whenever there has been a question about what direction the design should take, the choice
of analysis has always been make by falling back on how the information would look in the
lambda calculus. This reinforces the basic distinction between predicates and their arguments, or
between saturated relations and the functions that can be abstracted from them. KRISP is
essentially just an object-oriented repackaging of the lambda calculus, with the insight that the
binding of a variable to a value should be given a first class representation.

Another prime-directive is the principle of uniqueness. That, coupled with the goal of an
online semantic interpretation during the course of a parse, led to the development of KRISP’s
system of cross-indexes between objects via bindings and the discourse history. Every
representational system that is more than a paper notation will have comparable indexes just so
that its users can access the objects they define. It is only in KRISP, so far as we are aware, that
the indexing system is given substantial tasks such as finding the denotations of subsequent
references, and consequently is brought under the scrutiny of the linguistic system, which
provides a principled basis for deciding what is a good design or a bad design.

The evolution of KRISP will continue as improved treatments and alternative analyses are
developed. Significant evolution in the design is likely soon as we actually hook up a generator
and develop mapping tables for KRISP objects. We will start with the requirement that the
mapping be bi-directional, and explore the hypothesis that ‘anything a speaker can think (read
‘formulate in its representation’) it can say’. This is likely to stress many of the conceptualiza-
tions developed thus far only for parsing; but it can ultimately yield a sounder, more efficient
design as we use the need to determine why the generator should produce one text rather than a
variant with most of the same information to arrive at what primitives we should adopt and how
we should structure their representation in the speaker's mental model.

18

6. References
Brachman, Ronald J. (1979) “On the Epistemological Status of Semantic Networks”, in

Findler (ed.) Associative Networks, Academic Press, New York.
_____ & James G. Schmolze (1985) “An Overview of the KL-ONE Knowledge

Representation System”, Cognitive Science 9, 171-216.
_____, Deborah McGuinness, Peter Patel-Schneider, Lori Resnick & Alexander Borgida (1991)

“Living with Classic: When and How to Use a KL-ONE-like Language”, in Sowa 1991,
pp.401-456.

Fodor, Jerry (1983) The Modularity of Mind, MIT Press, Cambridge.
Jackendoff, Ray (1983) Semantics and Cognition, MIT Press, Cambridge, Massachusetts.
Mac Gregor, Robert (1991) “The Evolving Technology of Classification-based Knowledge

Representation Systems, in Sowa 1991, pp.385-400.
Maida, Anthony & Stuart Shapiro (1982) “Intensional Concepts in Propositional Semantic

Networks”, Cognitive Science 6, 291-330.
Marslen-Wilson, William & Lorraine Komisarjevsky Tyler (1987) “Against Modularity”, in

Garfield, Jay (ed.) Modularity in Knowledge Representation and Natural-Language
Understanding, MIT Press, pgs. 37-62.

McDonald, David D. (1993) “Reversible NLP by Deriving the Grammars from the Knowledge
Base”, ///////, in press.

_____ (1992a) "An Efficient Chart-based Algorithm for Partial-Parsing of Unrestricted Texts”,
proceedings of the 3d Conference on Applied Natural Language Processing (ACL), Trento,
Italy, April 1992, pp. 193-200.

_____ (1992b) “Type-Driven Suppression of Redundancy in the Generation of Inference-Rich
Reports”, proceedings of the 6th Intl. Workshop for Natural Language Generation, Trento,
Italy, April 1992, Springer-Verlag Lecture Notes in Artificial Intelligence #587, pp. 73-88.

Montague, Richard (1970) “The Proper Treatment of Quantification in Ordinary English”,
reprinted in Thomason (ed.) Formal Philosophy: Selected Papers of Richard Montague,
Yale University Press, 1974.

Sowa, John (ed.) (1991) Principles of Semantic Networks, Morgan Kaufman, San Mateo,
California.

Talmy, Leonard (1987) “The Relation of Grammar to Cognition”, in Rudzka-Ostyn (ed.)
Topics in Cognitive Linguistics, John Benjamins.

Woods, William (1987) “Knowledge Representation: What’s important about it?”, in Cercone
& McCalla (eds) The Knowledge Frontier, Springer-Verlag, New York, pp. 44-79.

1 Author's address: 14 Brantwood Road, Arlington MA 02174-8004.
 Internet: MCDONALD@CS.BRANDEIS.EDU.
2 For a discussion of one generation problem that we have treated with KRISP: how to
control the realization of redundant information in an extended text, see McDonald 1992b.
3“ “Sparser” stands for ”sparse parser”, reflecting the fact that the system is designed to
function robustly even when it has rules for only a small portion of a text. The portions within its
grammar receive a thorough, largely conventional analysis; the other portions are treated
heuristically or ignored entirely. This capability is a necessary property of any language
understanding system that is applied to real texts taken directly from newswires without
intervention or prefiltering.
4 By “generator” I mean to refer to a system that handles all of the processes involved in
the production of a text given a speaker's model of her world and her intentions. This is more
than just a ‘surface realization component’ that starts with a logical form. It includes the
processes that give an extended text its organization and coherence, the processes or mappings
that find lexical and syntactic realizations for the conceptual objects in the speaker's model, and

19

(depending on the design) processes that examine the speaker’s model to determine what
information should be selected for inclusion in the utterance.
5 This example, and the others that will be given in this section, is an example of the kinds
of texts Sparser can handle with its present grammars.
6 The standard notion of a model is a two-tuple consisting of a set of entities and an
interpretation function. The entities supply the denotations of expressions in the language being
interpreted, and the interpretation function defines the mapping from expressions to their
denotations. We are proposing just such a model here, with the difference that rather than
attempt to formally define the interpretation function we informally provide a set of protocols as
its standin. To do otherwise would be presumptuous at this point, since after all the language we
are mapping from is unrestricted English, and to be able to formalize its mapping function would
be to have solved the natural language problem!
7 See respectively Montague 1970; Brachman & Schmolze 1985, and Brachman et al.
1991.
8 More generally, there can be a category for any sub-maximal projection of a lexical item.
The unit corresponding to London-based investment bank would be a perfectly good category.
A maximal projection such as the NP the London-based investment bank or London-based
investment banks may or may not actually receive a denotation directly depending on their
context in a text, but would, when parsed, invoke procedures to either search the discourse
history for an individual that satisfied that description, or to create an individual of type
‘investment bank’ with a binding indicating its location.
9 There is also a conventional set of syntactic labels accompanying the semantic labels on
constituents. These labels, e.g., verb, modal, NP, clause, are used in default rules that are checked
if no semantically-labeled rule applied to a given pair of adjacent constituents. These default
rules of ‘syntactic form’ are presently used extensively within the verb-group but not at the
clause level.
10 This second instance of Mr. Ball is taken as denoting the same individual as the first by a
comparable lookup process where the name object, broken down into its individual name
elements, is itself reciprocally related to the person individual though bindings in the name
elements’ bound-in fields. The identity is established on the basis of sharing the same last name.
Note that this works less well for the two companies, since they share the element Prudential;
that judgement is more heuristic.

