
Producing Dialog at MERL:
problems in generation engineering

David D. McDonald
Mitsubishi Electric Research Laboratories
201 Broadway, Cambridge, Massachusetts

mcdonald@merl.com

Abstract
It is not necessary to have a full-scale NLG system in a
dialog system that uses fixed-text templates for its
responses to significantly improve in their cohesion and
fluency. Given a flexible system, fixed phrases can be
transparently replaced with pronouns or definite
references. We describe how our DiamondTalk
architecture lets us interpose our subsequent reference
facility, Potemkin, between the synthesizer component
and the Collagen collaborative dialog system where the
texts originate.

1. Introduction1

MERL has a history of research on collaborative dialog.
Our Collagen system (Rich & Sidner 1998), initially
developed more than seven years ago, is based on long-
standing work on the theory of discourse structure and
collaboration by Candy Sidner, Barbara Grosz and their
students (Grosz & Sidner 1990, Lochbaum 1998).
Collagen has been the basis for more than a dozen
demonstration systems, with more currently under devel-
opment.

Making Collagen part of a spoken dialog system,
however, has been a comparatively recent development.
Adding speech recognition and synthesis into the mix,
along with the goal of being able to evaluate an array of
different recognizers and text-to-speech (TTS) systems,
has led to a reevaluation of how Collagen should interact
with its “I/O” components and to the development of a
uniform architecture for spoken dialog, DiamondTalk‰,
that has allowed us to freely ‘plug-and-play’ alternative
recognizers, domain-specific semantic interpreters, spec-
ial-purpose generators, and several synthesizers.

The flexibility of this architecture has made it possible to
provide a simple fix to an particularly egregious problem
inherent in the fixed-string generation facility we are
using, namely that it has no ability to vary its descriptions
in response to changes in the context. In cannot produce
pronouns, definite noun phrases, or other reduced forms.

1 This work would not have been possible without the collabor-
ation of the other people in the speech and dialog group here at
MERL: Bret Harsham, Neal Lesh, Chuck Rich Bhiksha Raj,
Candy Sidner, Bent Schmidt-Nielsen, and Peter Wolf. Any errors
or misrepresentations are my own.

We will start by describing the present state of our
generation facilities, using examples from our ongoing
spoken-dialog projects. From there we will briefly describe
the DiamondTalk architecture. That will provide the
setting for describing Potemkin. our ‘last minute’ system
for repairing problems in cohesion.

2. Generation by composing fixed texts

There are many situations where the best choice of
generation system is a suite of fixed texts. (We will use the
term “fixed” texts to avoid the negative connotations of the
word “canned” and to reflect the fact that our output is
typically the result of composing pre-written text strings
rather than been entirely written out.)

Consider the voice-driven navigation and telematics
systems now appearing in high-end automobiles such as
the Jaguar or the Infinity. The driver gives instructions to
the car (“radio tune 89.7”, “I want to go to Narita
station”); the car responds by carrying out the action,
asking for confirmation or clarification (“please repeat”),
or giving instructions of its own (“turn left in a quarter of
a mile”). The car has a relatively small set of things it
needs to say (a recent evaluation called for a repertoire of
about 300 utterances) and given the poor acoustic
environment inside the car the best solution is to hire voice
talent to pre-record everything that the car may need to
say.

2.1 Letting in some grammar

The simplicity of a completely fixed output corpus breaks
down as soon as the task requirements include the need to
incorporate references to an open-ended set of entities (e.g.
street addresses). Often just replacing a variable in the text
with the value it has in this instance will suffice. However,
if this “direct replacement” code is being written by a
research team, the temptation to add just a ‘little bit’ of
grammar becomes too great to resist.

We can see this in systems dating back at least to
Winograd’s SHRDLU (1972). People whose concentration
is on problems other than generation (in our case dialog,
discourse structure, task modeling, agents, and tutoring)
will nevertheless want to embellish their substitution
systems with code that adds plurals, puts verbs in past
tense, adds markup, etc. This becomes a slippery slope.

Having a facility that lets you increase the fluency of your
output by writing more code makes it easy to postpone,
perhaps indefinitely, the move to a ‘real’ generation
system with an independent grammar, a planning phrase,
and microplanning capabilities.

2.2 Collagen’s Glosser

This is the situation here at MERL. Thanks to some very
clever work by Egon Pasztor, we have a rich programming
language (a suite of Java classes) for providing “glosses”
for the terms in our task models. Taking an example from
our speech-driven forms-filling system FormsTalk,
suppose the user has said “617 621 7585”. Based on the
pattern of digits, the speech recognition system knows that
it has heard a phone number, but the pragmatic component
(Collagen) knows that it does not have enough information
to determine which of the two empty phone number fields
in the form the user intended it to fill. In this situation our
agent uses the code below to construct the utterance “Is
617 621 7585 your home phone or work phone?”.
public Gloss glosser (WhichField which) {
 Gloss g = new Gloss();
 translateVerb(g, "collagen.verb.is")
 .append(" \'")
 .append(render(which.getFiller()))
 .append("\' ");
 translateSp(
 g, "collagen.actor.possessive.other")
 .append(which.getFields());
 questionize(g);
 prependSubjectAndVerb(g, which);
 return g;
}

 (This is a Java method that takes an ambiguous field of
the form as its argument. Terms like collagen.actor.
possessive.other pick out properties in a resource file, in
this case the string “your”. The translate methods looks up
their values: translateVerb takes tense into consideration
and translateSp saves a common line of code by adding a
space.)

Our ‘gloss-based’ generator, while unlikely to ever make
the cut for a generation conference, has much to
recommend it. Once you become fluent in its programming
idioms, it lets you go well beyond what can be achieved by
direct string replacement. The gloss data structure records
where objects were referenced within the string (e.g. the
objects representing the phone number and the two fields),
and glosses can be presented in a viewer where you can
see what these objects were and edit them. Using symbols
as the intermediaries to strings (collagen.verb.is) makes
glosses easily localized to a particular language by
changing the interpretation of the symbols. At a click of a
button the same utterance can presently appear as English,
French, or Japanese. It can also be rendered in the
underlying planning language or even its raw hexadecimal,
which is invaluable for debugging.

Never the less, our glossing facility has two severe
limitations. The first is the sort that would be cured
through the use of a grammar with good coverage.
Suppose you were not satisfied with the phrasing of the
system’s response and wanted to have it say “Is 617 621
7585 your home phone or your work phone?”, repeating
the possessive on either side of the conjunction. In
principle this could be done in gloss code, but in practice it
would be too difficult to be worth the effort. On the other
hand, if the production of the text were mediated by a
grammar, it might require just adding a single feature.

The other problem is more noticeable and more severe.
Glosses are context free—there is no means for the
discourse context to influence what is said. The gloss code
will always replace objects with the same strings
regardless of whether this was an object’s first reference or
tenth, whether it is in focus or deducible from context.
While replacing the glossing facility with something more
linguistically principled is too extensive a project to do in
the short term, the flexibility afforded by the DiamondTalk
Architecture permits us to immediately go after a
particular class of ‘low-hanging fruit’: the production of
subsequent references to concrete objects, and to do so in a
way that is transparent to other system operations.

3. The DiamondTalk Architecture

Our choice of what to focus on in our work has mandated
that rather than build our own recognizers or synthesizers
from scratch we adapt systems that are ‘taken off the shelf.
This leads to a focus on evaluating alternatives (at this
point we have been looking at more than five recognizers
and six text-to-speech systems) and on using machinery
that lets us readily swap one for the other within the same
application.

To this end, DiamondTalk is defined by a set of
interfaces that its components must satisfy, and by a
message-passing protocol that links their activities. Neither
the choice of implementing component nor the links
between components are fixed: they are set at launch time
by wiring routines that connect event sources to event
listeners according to the specification given in the launch
command.

The toplevel of DiamondTalk consists of four compon-
ents as show in Figure One. The arrows show only the
major aspects of the information flow. Dotted arrows
indicate the transfer of state information.

The structure and message protocols within sub-
components can be whatever the particulars of the imple-
menting systems demand. The contract on the SpokenInput
component, for example, is only that it pass on to the
Manager a domain-specific semantic interpretation of what
it heard. It is immaterial to the operations downstream
whether the speech source was a person speaking live into
a microphone, a stored WAV file, or a file of text strings.

Figure One: DiamondTalk

3.1 Spoken Output

Similarly the internal composition and operation of the
SpokenOutput component is completely independent of
other components’ assumptions. The system’s input and
output languages don’t even have to be the same. The
input could be English and the output Japanese. Indeed an
option we are considering for debugging our tutor is for
the output to be in two languages at once: spoken Japanese
and written Japanese and English.

Our SpokenOutput component breaks down into a
Generator component and a Synthesizer component. The
Manager issues a statement of what content is to be said
which is listened for by the Generator. The Generator is
responsible for determining the structure and wording of a
text that can communicate this content in the present
situation. In terms of the usual model of a NLG system, it
is responsible for microplanning and surface realization. In
fact what it does is apply the appropriate glossing methods
(recursively) to the structured object that is passed to it
from the Manager.

The generator issues a message containing that infor-
mation that is listened for by the Synthesizer component
which is responsible for uttering it. If the Synthesizer is a
TTS engine this is just the sequence of words with some
markup. The string is the output of the glossing methods.

Other components than just the Synthesizer can listen to
the Generator’s output. This is how, for example, we can
have the text both spoken and printed to a trace window.
Since the inter-component wiring is explicit, we can also
arrange for the output of the Generator to be ‘intercepted’
by a component that satisfies the interfaces of both the
Synthesizer and Generator, modifying the Generator’s
original output and then issuing the new text on to the
Synthesizer. This is how the Potemkin system achieves the
transparency alluded to earlier. It emulates a Synthesizer to
get the output of the Generator, and it emulates a
Generator to issue revised strings to any connected
listeners, principally the Synthesizer.

The Synthesizer components we are using are not simply
wrappers around text-to-speech systems, though that is a
significant part. As part of our work on hosting (Sidner &
Dzikovska 2002), we have a stationary, foot-high robot
shaped like a penguin that we call Mel. Mel is equipped
with face recognition and audio localization systems, and it
has been instrumented to use the two degrees of freedom
in its trunk and head to attend to the face or voice of
people in the vicinity. Part of what Mel can do is use its
head to nod at appropriate moments while it is speaking.
To do this we use a copy of the BEAT system developed at
the MIT Media Lab (Cassell et al. 2001). BEAT is driven
by a simple model of the distribution of given and new
information in the text, as indicated by markup tags, which
we supply by simple observations of the status of objects
within Collagen’s focus spaces. We get a rough timing
specification from the TTS of the words that will be
spoken, augment the text-markup with that and the
given/new information, and then feed this as an
independent stream to Mel’s control system. We have also
set up Mel to use its beak as a pointer to show the user
what to look at on a table display of a complex control
panel, where it is working from the same data stream as we
use with our mouse-based pointer on a display screen.

3.2 Collagen

The Manager component in DiamondTalk is a wrapper
around the core components of the Collagen system, as
shown in Figure Two. Collagen has been extensively
described elsewhere (e.g. Rich et al. 2001), but in brief, the
Discourse component makes use of a Task Model to
compute the pragmatic interpretation of what the user has
just said or done. This updates the Discourse History and
leads the Agent to decide what it should say or do in
response. The Discourse and History are then updated to
reflect what the Agent does as it carries out its action.

While we refer to the component as a ‘manager’,
implying that its role is to coordinate the efforts of other
components of the system (compare the notion of a ‘hub’
in Polifroni & Seneff 2000), Collagen is better thought of
as a full participant in the conversation, trying to collab-
orate with the human user in the completion of some task.
(The wrapper around Collagen in DiamondTalk does do
some strictly coordinating activities, such as orchestrating
push-to-talk and barge-in, and translating between
representations.)

 Figure Two: Collagen

4. Potemkin

The downside of using fixed texts is of course that how-
ever fluent a text might be in isolation, it will always come
out the same way each time it is used, even when it
shouldn’t. We developed the Potemkin component to
address one particular instance of this problem, generating
subsequent references to objects. Here we will describe
where Potemkin fits in, its assumptions, its choice of
representations and decision criteria, and provide a short
example.

Reference generation has developed a rich literature over
the years (e.g., van Deemter 2002, Dale & Reiter 1995,
Bateman & Teich 1995, Dale 1992). The focus of most of
that work, however, is on how to construct contextually
appropriate ‘initial’ references—what you say the first
time an object is mentioned. Our concern, in contrast, is
with how the object is realized the next time it is
referenced (“subsequent reference”), particularly with
cases where a pronoun would not be appropriate. This kind
of work has received more attention in the information
extraction community than in generation (but see, e.g.,
Callaway & Lester 2002 or McCoy & Strube 1999), yet it
is an area of considerable importance in generation since
well fashioned subsequent references are a key aspect of
what makes a text fluent.

4.1 The problem

The problem with a generation system that has no sub-
sequent reference capability can be seen in an example
from our tutoring system, Paco (Rickel et al. 2002). Figure
Three shows a short except from a session between Paco,
P, and a student, S, who is being show how to find their
way around the (simulated) control panel of a power plant.
This is what we get without employing Potemkin.

P1: Let’s navigate to the screen that contains the turbine
speed indicator. Notice that the Alarm button is red,
indicating that we are viewing the Alarm panel. Ok?

S1: Ok.
P2: Press the Operation button.
S2: < user presses the button >

P3: Right. Now notice that the Operation button is red,
indicating that we are viewing the operation panel.
Ok?

S3: Ok.
P4: Now press the Operation Menu button.

Figure Three: Excerpt from tutoring dialog
When you hear these texts spoken by a text-to-speech

system, even one that is state of the art, you are
immediately struck by the fact that it doesn’t say “the
button” in P3. This is a failure in cohesion (Halliday &
Hasan 1976) that come from it only having one way to say
“the Operation button” (P2, P3). Even though the gloss
methods in Paco are compositional and often quite
sophisticated (sentence P1, for example, was produced in
four chunks, including the deliberate use of “let’s” as a
discourse marker), they only have one way to refer to each
of the objects in the power plant control panel.

One could, perhaps, provide the needed alternatives on
an ad-hoc basis, but with the glossing machinery already
stretched to its limit as a programming system, its has no
practical way to access the rich contextual representations
of the discourse that are in other respects central to
Collagen’s design and operation. Consequently
alternatives can only be used randomly. (Paco does do this
for acknowledgements and channel checkers.) This led us
to start a small project (well under a man-week as this is
written) to develop the Potemkin system.

4.2 Changing the wiring

The loose-coupled nature of the components in Diamond-
Talk lets us interpose a new component between the
Generator and Synthesizer without having to touch the
code in either of them, only the code that wires them
together. The Potemkin component satisfies the interfaces
of both a Generator and Synthesizer, letting us wire the
output of the regular Generator to the input of Potemkin,
viewed via its synthesizer interface, and then wire the
output of Potemkin, viewed via its generator interface, to
the standard input of the Synthesizer.

Potemkin’s design relies on two facts about the Paco
tutor:

(a) that it works in a closed-world where the identity of
every object that might be talked about is known in
advance, and

(b) that the fixed-text generator (glossing) will produce
the very same text string every time a particular
parameter value is mentioned.

This permits Potemkin to have instances of strings, such
as “the Operator button” serve as proxies for what might in
other circumstances be richly typed data structures
maintained explicitly by the control room simulator. (The
simulator does have structures for this and other objects,
but with only enough type information to support its
displays (e.g. a type for ‘button’ but not for ‘Operator’,

which is just a string). In addition, typing and object
identities are modified (wrapped) when these objects are
projected into Collagen for reasoning within the task
model.)

Essentially what Potemkin does is establish a parallel
system of representation—one that is intended to capture
just the information that is relevant to subsequent reference
generation. This lets us experiment with what needs to be
represented and with what information should be taken
into account for this task, all without having to modify
other regions of the code every time one wants to try out
some alternative.

4.3 Expressive types

The representation used in Potemkin employs two systems
of types. An object’s ‘intrinsic type’ reflects its identity as
a instance of a class or a natural kind. These types are the
sorts of things that would be deep sources for common
nouns: “button”, “panel”. Their role in Potemkin is to let
us keep tract of ‘distracters’, e.g. what other buttons have
been mentioned recently that might be confused with the
one we are about to mention.

Every object also has an ‘expressive type’, that governs
how it can be realized. These are a minimal treatment of
the concept developed by Meteer (1992) to capture the fact
that an object’s possible realizations fall into systematic
classes that are generic to a language and which facilitate
reasoning about what choices to make when generating. In
Meteer’s theory, expressive types are used during
microplanning to reason abstractly about the options for
composition. For example they facilitate the handling of
lexical gaps: Given an object with an expressive class that
includes both ‘make NP’ and ‘VP’ alternatives (“make a
decision”, “decide”) and the requirement to compose it
with some version of the modifier ‘important’, only one of
the two alternatives will support it since the class for
‘important’ has no realization as an adverb.

As we are using them in Potemkin, the expressive types
only incorporate information about options for subsequent
reference, where the goal is to produce the most reduced
realization that is licensed by the context. To this end, the
types are organized into a lattice as shown in Figure Three.
This is a subsumption lattice organized from general to
specific. Any object that can be realized by an expressive
type low in the lattice could also, conditions permitting, be
realized by any of the parents of that type. Higher types in
the lattice produce more reduced, more cohesive,
realizations than their daughter types. The ‘individuated’
expressive type produces pronouns.

Note that this set of expressive types is by no means
complete (it is probably low by several orders of
magnitude), but it has proved sufficient so far for our
initial dialogs in the power plant domain.

Figure Four: Expressive Types
Returning to our example, we have classified ‘the Oper-

ation button’ as having the expressive type ‘distinguished
instance of a kind’ since the term ‘Operation’ distinguishes
it from other instances of the kind ‘button’. ‘Operation’ is
represented as its own intrinsic type. To set up the universe
of objects that we need in order to support subsequent
reference realizations of ‘the Operation button’ in our
example (the Potemkin village as it were), we execute the
three statements below, which create the objects we need.
defineKind("button");
defineKind("Operation");
create("the Operation button",
 kindNamed("button"),
 new EType.DistinguishedIOAK(
 kindNamed("button"),
 kindNamed("Operation")));

The defineKind method creates a new intrinsic type with
the indicated name; all intrinsic types get the expressive
type ‘has a name’. The create method makes an object of
the indicated kind whose full initial reference text is given
as the first argument. Note that this is the identical string
by which it will be given by the glossing machinery. The
method also makes an instance of the object’s expressive
type, ‘distinguished instance of a kind’, where we specify
what the kind and the distinguisher are.

4.4 How it works

Potemkin’s procedure is straightforward. As the Agent
makes its decisions about what to say, a succession of
fixed texts, the results of glossing facility, will be issued
from the Generator component to any listening com-
ponents (Potemkin and a monitoring window). Potemkin
examines each string that it receives for substrings that
match any of the strings of the objects it knows about.
When there is a match, it uses the matched string to looks
up the corresponding object, calls the object’s realize
method to receive the string it should use in this instance,
makes the substitution, and then continues its search.
When the whole text string has been examined it is issued
to the TTS engine in the Synthesis component just as
though the Generator component had done it. This means
that the subsequent reference machinery in Potemkin is run
incrementally, left-to-right, in the natural order of the text

and can consequently assume that all of the relevant
backward-looking context has been established when it
sets about to make its decisions object by object.

Given the expressive type machinery, with the
alternatives organized into a subsumption lattice, the
algorithm for producing subsequent references is very
simple. First we check whether the object has appeared in
the discourse history. If it has not, then this is an initial
reference and we use the fixed text as came out of the
gloss. Otherwise, we walk up the object’s line in the lattice
starting with the expressive type that the object was
assigned when it was defined. Each type has a method that
examines the object and the discourse context to determine
whether is licensed for use. We scan for the most general
type that is licensed in this particular instance and take the
realization that it produces.

This design has considerable economy. The decision
criteria are given just once, regardless of how many
objects may need to use them. Its production machinery is
compositional wherever possible, with lower, more
specific types assembling their larger realizations out of
the smaller parts provided by the higher, more generally
applicable types. To use this technique, each object (or
object type) just has to be assigned an expressive type by
creating an instance of the type in order to indicate, e.g.,
what the object is a kind of or what other objects acts as its
distinguisher from other objects of that kind. The result is
quite lightweight.

The licensing checks for the expressive types—their
decision criteria for whether they can provide the
realization—are only preliminary as this is being written
and they are very simple. They suffice for the few tutoring
scenarios we have looked at so far, but whether they will
continue to produce nice results in other tutoring situations
is hard to determine. We do know that since glosses
produce only strings of fixed text and not syntactic
structures that the criteria are likely to be quite brittle. A
case in point is the licensing criteria for Individuated, the
source of pronouns. It is only licensed if the previous
instance of the object was as the very first thing in the
sentence. That is a weak substitute for knowing whether it
was the grammatical subject, which in turn is a weak
substitute for knowing that the object is intended to be in
focus, something we will be able to represent when we
have adapted Collagen to directly support generation; see
below.

To look briefly at Potemkin in action, we repeat here the
portion of the example Paco dialog where the object ‘the
Operation button’ occurred:

P2: Press the Operation button.
S2: < user presses the button >
P3: Right. Now notice that the button is red, indicating

that we are viewing the operation panel. Ok?

The instance in P2 is the first occurrence of OB in the
dialog, so the full text that the gloss produces is used (“the

Operation button”). In its second instance, P3, Potemkin’s
operations take over. It was in object position in P3, so the
top option in the expressive type lattice is not licensed and
we ask whether the next type down, ‘Instance of a kind’, is
licensed. Its criteria is recency. It is licensed so long as the
last instance of the object was part of the last Agent/User
exchange (P2, S2). In this example it was part of the
Agent’s last utterance (P2) so the type is licensed. This
being the case, we employ the realization method that
comes with ‘instance of a kind’. Since we are only dealing
with strings, this is just a matter of appending the name of
the kind (“button”) after the word “the”. Crude but
effective.

5. Future directions

As we have said, Potemkin is only intended as an easily
developed, stop-gap measure that addresses one particular
nagging problem in the texts that our glossing facility
produces. Our eventual goal is to develop a generator that
is specifically tuned to the requirements of spoken dialog
and the capabilities of the Collagen system. The question
is how to get there via an evolutionary path that is
minimally disruptive. We cannot, for example, simply
choose to expunge the glossing facility from our code, if
for no other reason that it would instantly break the four-
teen Collagen demos that we maintain. And indeed there
are situations where we would not want to.

5.2 Predicate-argument structure

We need more flexibility in composing minimal (fixed)
phrases: the composition needs to reflect their information
status in the discourse and the intentions of the speaker
(i.e. the Agent component within Collagen). We also need
to annotate the texts with their linguistic structure so that
we can guide the prosodic judgments of a speech
synthesizer to reflect the information structure.

To do this, we are considering having the authors of
(future and ongoing) glossing methods include a specifi-
cation of the text’s predicate-argument structure along with
their fixed glosses. The predicates would subsume the
constant portions of the texts, and the arguments, as
before, would be references to objects inside Collagen’s
task model. The predicates would then provide a substrate
for the linguistic structure.

The intention is just to abstract away from the literal
wording that would otherwise have been used—to deploy
symbols in lieu of text-strings. Unless pushed to it by
additional goals, the predicates do not need to be drawn
from a general ontology or an inter-lingua (e.g. along the
lines of the SENSUS project (ISI 2002)). Our earlier
glossing example (“Is 617 621 7585 your home phone or
your work phone?”) could be assigned ‘simple-copular-
question’. (There is not point in abstracting out relations

like ‘question’ without a grammar in place to mediate
between the predicates and their surface forms.)

One such goal however might be to provide the
information needed to drive a real microplanner. (This is
the term in NLG for a component that manages tactical
issues such as how minimal phrases are combined, how
sentence lengths and styles are determined, and choices
among semantically comparable words.) We have been
talking to Charles Callaway about possible collaborations
where we would incorporate his microplanning techniques
(Callaway & Lester to appear).

5.3 Introducing surface syntax

Initially the predicates will just be syntactic sugar over the
individual fixed texts. The move to add linguistic
descriptions will take place slowly because there are
research issues involved. We do have access to a large
TAG grammar that is optimized for language generation
and would have ample coverage for the kinds of
constructions that our dialog systems tend to use, but it is
not clear that this would be the correct choice since its
design reflects the surface syntax of a text, not its infor-
mation structure.

That grammar was used as the basis of quite reasonable
speech (for that time) using a Klatt-based rule-based
synthesizer by following Pierrehumbert’s original rules
and fitting the vowel pitches to a catenary curve between
the start and end points of the major syntactic phrases
(Rubinoff 1986). However, since we have the opportunity
to develop an interesting model of information-structure
because of the resources in Collagen, we are looking at
theories of how information structure is related to prosody
such as Mark Steedman’s (e.g. Steedman 2002), and this
could very well lead to different choices.

Part of the problem is that to produce the best results, the
choice of linguistic annotation on the predicates should be
tailored to the choice of speech synthesizer. Unfortunately
this choice is not obvious. On the one hand, to get the best
quality speech with minimal effort, particularly for aud-
iences of non-native speakers of English, we should use
one of the commercial TTS systems, such as the offerings
from AT&T2 or Rhetorical Systems. 3 Our experiments
show that they do indeed sound strikingly like a person if
the choice of prosodic tune is not an issue.

However the choice of tune is very much an issue in the
concept-to-speech word we intend to do (for groups with
comparable issues see Alter et al. 1997). Consider our
examples from the tutoring domain. The agent’s first turn
(Figure Three, P1) was this sentence: “Notice that the
Alarm button is red, indicating that we are viewing the
Alarm panel.”. ‘Alarm’ is given information the second
time it is mentioned, and a person uttering that sentence is

2 http://www.naturalvoices.att.com/
3 http://www.rhetoricalsystems.com/

very likely to use a tune for “the Alarm panel” that reflects
that information structure by putting the phrasal stress on
“panel” and using a low or level pitch for “Alarm”. The
off-the-shelf TTS systems, on the other hand, because they
are using a default model for the structure of a simple
nominal compound, put the stress on “Alarm”, which is
completely at odds with the discourse facts and sounds
jarring to the attentive listener. It would be natural to add
this prosodically realized option to the realization choice
of the ‘distinguished instance of a kind’ expression type,
but that will only be possible if the synthesizer supports it.

If we are willing to live with artificial sounding output
we can use an off the shelf synthesis-by-rule system that
we have experimented with, the Eloquence TTS developed
at OGI that is available from SpeechWorks4 and else-
where. It accepts a very rich markup language that would
appear to allow one to express anything that can be
represented using ToBI markup (Pierrehumbert &
Hirschberg 1990). There is also of course Festival,5 and the
Java-based FreeTTS6 that can efficiently drive Festival
voices. These have been used to great advantage by groups
that have been able to devote the resources to developing
application-specific concatenative voices (e.g. Swartout et.
al 2001).

In this paper we have described our architecture for
spoken dialog systems and how it lets us transparently
insert a new component, a specialist in the generation of
subsequent references, between a generator that composes
fixed-text utterances and the synthesis component. We
have also laid out our future plans, which are to adapt the
rich model of discourse in the Collagen collaborative
dialog system to the needs of a generator that is targeted to
the demands and capabilities of today’s speech synth-
esizers. We are especially fortunate because here at MERL
we have a speaker that actually knows why it is saying
what it does—it has real intentions towards its audience.
This is new territory for most all work in natural language
generation, and we hope to take advantage of it.

References

Alter, K, H. Pirker, and W. Finkler eds. (1997) Concept to
Speech Generation Systems: Proc. of the ACL workshop,
July 11, 1997, Madrid.
Bateman, J.A. & E. Teich (1995) Selective information
presentation in an integrated publication system: an applic-
ation of genre-driven text generation, Information Proces-
sing and Management: Special Issue on Summarizing
Text, 31(5), 753-768, September.

4 http://www.speechworks.com/products/tts/eti.cfm
5 http://www.cstr.ed.ac.uk/projects/festival/
6 http://sourceforge.net/projects/freetts/

Cassell, J,. Vilhjalmsson, H., Bickmore, T. (2001) BEAT:
the Behavior Expression Animation Toolkit, Proc.
SIGGRAPH 2001, New York, 477-486.
Calloway, C.B. & J.C. Lester (2002) Pronominalization in
Generated Discourse and Dialog, Proc. 40th Annual
Meeting of the ACL, University of Pennsylvania, 88-96
Calloway, C.B. & J.C. Lester (to appear) Narrative Prose
Generation, AI Journal.
Dale, R. (1992) Generating Referring Expressions, MIT
Press.
Evans, R., P. Piwek, and L. Cahill (2002) What is NLG?,
Proc. 2nd International Natural Language Generation
Conference, Arden Conf. Center, Harriman New York,
July 1-3 2002, 144-151
Lochbaum, K.E. (1998) A collaborative planning model of
intentional structure, Computational Linguistics 24(4) 525-
572.
Grosz, B. & C. Sidner (1990) Plans for discourse, in P.R.
Cohen, J. Morgan, & M.E. Pollack (eds.) Intentions in
communication, chapter 20, 417-444, MIT Press.
Halliday, M.A.K. & R. Hasan (1976) Cohesion in English,
Longman.
ISI (2002) http://www.isi.edu/natural-language/resources/
sensus.html
McCoy, K.F. & M. Strube (1999) Taking time to structure
discourse: Pronoun generation beyond accessibility, Proc.
21st Conf. Cognitive Science Society, Vancouver, 378-383.
Meteer, M. (1992) Expressibility and the Problem of
Efficient Text Planning, Pinter.
Pierrehumbert, J. & J. Hirschberg (1990) The Meaning of
Intonational Contours in the Interpretation of Discourse, in
Cohen et al. (eds.) Intentions in Communication, MIT
Press 271-323.
Polifroni, J. & S. Seneff (2000) Galaxy-II as an
Architecture for Spoken Dialog Evaluation, Proc. Second
International Conference on Language Resources (LREC),
Athens, Greece, May 31-June 2, 2000.
‘Ongoing Ontology projects’ http://www.cs.utexas.edu/
users/mfkb/related.html
Reiter, E., R. Robertson, and L. Osman (1999) Types of
knowledge required to personalize smoking cessation
letters, in Proc. AIMDM’99, 389-399.
Rich, Ch., C. Sidner & N. Lesh (2001) COLLAGEN:
Applying Collaborative Discourse Theory to Human-
Computer Interaction, AI Magazine 22(4) Winter, 15-25.
Rickel, J., N. Lesh, C. Rich, C.L. Sidner, and A. Gertner
(2002) Collaborative Discourse Theory as a Foundation for
Tutorial Dialog, International Conference on Intelligent
Tutoring Systems (ITS), Vol. 2363, 542-551, June
(Lecture Note in Computer Science).

Rubinoff, R. (1986) Adapting mumble: Experience with
natural language generation, Proc. AAAI-86, 1063-1068.
Sidner, C. & M. Dzikovska (2002) Hosting Activities:
Experience with and Future Directions for a Robot Agent
Host, Proc. IUI’02, January 13-16, San Francisco.
Steedman, M. (2002) Information-structural Semantics for
English Intonation, draft 2.1 on www.information.cs.ed.
ac/~steedman/papers.html
Swartout, W, R. Hill, J. Gratch, W.L. Johnson, C.
Kyriakakia, C. LaBore, R. Lindheim, S. Marsella, D.
Miraglia, B. Moore, J. Morie, J. Rickel, M. Thiebaux, L.
Tuch, R. Whitney & J. Douglas (2001) Toward the
Holodeck: Integrating Graphics, Sound, Character, and
Story, Proc. 5th Conf. on Autonomous Agents, Montreal,
June 2001.
Welty, C. and B. Smith (eds.) (2001) Formal Ontology in
Information Systems, ACM Press.
Winograd, T. (1972) Understanding Natural Language,
Academic Press.

