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Abstract. We describe a method for semantic modeling of multimodal
documents and discuss how this can be used to generate an abstractive
summary. Information extracted from the text by a semantic parser and
from the graphics by a graph understanding system is combined into a
single knowledge base. By operating at the semantic (rather than the
surface) level, we are able to integrate information collected from both
text and non-text sources. From this unified semantic model, we can
evaluate the importance of each part of the extracted knowledge and
produce a comprehensive summary of the entire multimodal document.

1 Introduction

This work is part of a larger ongoing effort to produce better and more inclu-
sive descriptions of the information contained in multimodal documents found
in popular media. Multimodal documents consisting of text and information
graphics (such as bar charts and line graphs) pose a difficult challenge for tra-
ditional natural language processing techniques. The graphical content is not
always duplicated in the text of the document [4], and yet the graphic may
contain valuable information important to the article’s message. The content
creator had a reason for including the graphic in the multimodal document, and
if the graphic is ignored, the summary may not be a good representation of the
document as a whole. Our current focus is on combining information extracted
from the text with the most important information conveyed by the graphics in
order to produce an integrated summary of the entire article. This line of work
helps address what is commonly known as the information overload problem by
condensing the information contained in multimodal documents into brief syn-
opses. This is particularly important for people with visual impairments, due
to the significant time investment required for them to read lengthy articles, as
well as the additional difficulties they face in accessing graphical content. We ap-
proach summarization from a generation perspective, thus our goal is to produce
a natural language summary as output.

� This work was supported in part by the U.S. Dept. of Education National Institute
on Disability and Rehabilitation Research under grant no. H133G080047.



2 Motivation

A summary which considers the information contained in graphical sources
should be abstractive in nature. Most summarization tools utilize extractive
techniques [19, 20], whereby the most important sentences are extracted from a
document and then reassembled to form the summary. However, this approach
cannot faithfully retrieve the information stored in graphics since these non-
textual modalities offer no sentences for extraction. Some research into sum-
marizing or otherwise representing the content of a graphic has relied solely on
captions and other sentences in the article explicitly referring to the graphic in
order to summarize it [2, 34]. However, studies have shown that the graphical
content is often not repeated in the accompanying article text [4] and captions
are often uninformative [14]. Work on summarizing multimodal documents has
taken images and text into account to some extent, by doing very shallow pro-
cessing on an image to categorize it [11], or using the accompanying text to
disambiguate image contents [31], but none that we are aware of consider a
graphic on par with text in terms of adding communicative content to a docu-
ment. Furthermore, summaries produced by extractive methods in general, while
syntactically correct, have been shown to lack cohesion and suffer from ambigu-
ity and referent identification issues [26]. In contrast, an abstractive summary
would address both of these issues by working from an underlying semantic rep-
resentation of the text and graphics, and by using natural language generation
techniques for text structure and surface realization to ensure text coherence.

One possible approach to facilitate extractive summarization of multimodal
documents would be to first generate a textual description of the graphics [12,
7] and then insert this description into the document text before performing
sentence extraction. However, not only would the resulting summary suffer from
the limitations inherent to extractive methods described above, it would face
additional difficulties because the combined text (machine-generated graphical
description inserted into original text of article) would be written by two differ-
ent authors in two different styles, thus leading to even more coherence issues.
Therefore, not only do graphics require an abstractive treatment, information
from both text and graphics should be semantically integrated in order to gen-
erate a cohesive summary of the entire multimodal document.

Automatic summarization methods that more closely approximate the hu-
man process of conceptual integration and regeneration in writing an abstract
will likely produce results which are more human-like than that of traditional ex-
traction techniques. However, the automatic abstractive summarization of text
has proven to be quite a challenging problem [27], even without considering the
incorporation of multimodal sources of information. Efforts directed towards ab-
straction have included the modification (i.e., editing & rewriting) of extracted
sentences [18], as well as using partial semantic analysis with text regenera-
tion and elaboration to produce indicative-informative abstracts from technical
information [30]. Some research into “semantic abstraction summarization” has
aimed to represent the summarized content as a graphical condensate [17], rather
than producing a natural language summary. Our work shares similarities with



the knowledge-based text condensation model of Reimer & Hahn [29], as well
as with Rau et al. [28], who developed an information extraction approach for
conceptual information summarization, though our goal is to represent both the
text and the graphics in a single conceptual model in order to generate a natural
language summary of a multimodal document.

3 Methodology

In the remainder of this paper, we will present our method for extracting infor-
mation from text and graphical sources to build a semantic model that captures
the information content of both the text and the graphics, and then discuss how
an abstractive summary can be produced from this model.

3.1 Text Understanding

The semantic parsing of document text is performed by Sparser [21], a bottom-
up, phrase-structure-based chart parser, optimized for semantic grammars and
partial parsing.3 While most parsers stop at a structural description, Sparser
produces a disambiguated conceptual model. It outputs categorized objects and
relationships, creating and adding specific facts to instances of highly-structured,
predefined prototypes. Sparser contains a built-in, sophisticated linguistic model
of core English grammar, as well as a model of common items such as names,
locations, times, and amounts. Given a document and domain-specific grammar,
Sparser performs a linguistic analysis, identifying each part of the text where
the subjects of its grammar appear, and emitting partially-saturated referents
(PSRs) as a semantic representation of what it recognizes [23]. A PSR is a
semantically-incomplete representation of a concept for which some of the char-
acteristic information can be missing; in other words, an object possibly lacking
values for some of its attributes.

Existing Sparser grammars provide coverage for several different domains, in-
cluding business news articles. A collection of multimodal documents from pop-
ular media has been assembled, most of which contain article text accompanied
by information graphics. Among these articles are many in the business news do-
main. We have extended Sparser’s semantic grammar for this domain, allowing it
to analyze texts like the article entitled “Will Medtronic’s Pulse Quicken?” from
the May 29, 2006 edition of Businessweek magazine.4 Such texts convey infor-
mation about stock prices, earnings forecasts, analysts’ predictions, and market
conditions. Sparser recognizes these semantic entities, builds and modifies PSRs
to represent them, and adds these to the semantic model being constructed.

3.2 Graph Understanding

As image understanding research has not yet developed tools capable of extract-
ing semantic content from every possible image, we must restrict our focus to a

3 https://github.com/charlieg/Sparser
4 http://www.businessweek.com/magazine/content/06_22/b3986120.htm



limited class of images for the prototype system implementation. We have opted
to leverage capabilities developed for the SIGHT system [9], which generates tex-
tual summaries of information graphics found in popular media (e.g., magazines,
newspapers) for people who have visual impairments. Rather than focusing on
specific data points or the shape of the graphic (as might be appropriate for a
scientific graph), SIGHT conveys the underlying message (made apparent by the
choice of graph type and the communicative signals entered into the graphic by
the graph’s author) along with propositions that are highlighted by visual fea-
tures. For example, given the bar chart in Fig. 1, SIGHT generates the following
initial summary [8] in about one minute on a modern PC:

Following a moderate rise between the year 1993 and the year 1994, the
graphic shows a decreasing trend in the amount of newark rainfall for
july over the period from the year 1994 to the year 2002. The amount
of newark rainfall for july shows the largest drop of about 1.29 inches
between the year 1999 and the year 2000. With the exception of a few
rises, slight decreases are observed almost every year over the period from
the year 1994 to the year 2002.

Our framework is general enough to accomodate arbitrary image types and other
modalities (e.g., audio, video), however. Incorporating other modalities would
require adding a module capable of mapping the particular modality to its un-
derlying message-level semantic content.

Figure 3: Initial Summary and Follow-up Responses.

are in a contrast relation (shown in bold), which
changes the ranking of these propositions.

4 Evaluation

To determine whether our framework selects ap-
propriate content within the context of an applica-
tion, and to assess the contribution of the discourse
related considerations to the selected content and
their impact on readers’ satisfaction, we conducted
two user studies. In both studies, the partici-
pants were told that the initial summary should
include the most important information about the
graphic and that the remaining pieces of informa-
tion should be conveyed via follow-up responses.
The participants were also told that the informa-
tion in the first response should be more important
than the information in subsequent responses.
Our goal in the first study was to evaluate the

effectiveness of our framework (base-setting) in
determining the content of follow-up responses in
SIGHT. To our knowledge, no one else has gener-

ated high-level descriptions of information graph-
ics, and therefore evaluation using implementa-
tions of existing content selection modules in the
domain of graphics as a baseline is not feasible.
Thus, we evaluated our framework by comparing
the content that it selects for inclusion in a follow-
up response for a particular graphic with the con-
tent chosen by human subjects for the same re-
sponse. Twenty one university students partici-
pated in the first study and each participant was
presented with the same four graphics. For each
graphic, the participants were first presented with
its initial summary and the set of propositions (18
different propositions) that were used to construct
the relation graph in our framework. The partic-
ipants were then asked to select the four propo-
sitions that they thought were most important to
convey in the first follow-up response.
For each graphic, we ranked the propositions

with respect to the number of times that they were
selected by the participants and determined the po-
sition of each proposition selected by our frame-

Fig. 1. Example bar chart processed by SIGHT.

Several modules of the SIGHT system are relevant to our current work. The
image file is first analyzed by SIGHT’s visual extraction module [6], which pro-
duces an XML representation of the information stored in the graphic [16]. For
example, given a bar chart, the XML output contains axis labels, information
about each bar (e.g., position, height, value, color/shading), captions and leg-
ends, etc. We contend that this “raw information” extracted from the graphic



(the visual level) is not the proper level of understanding upon which to base a
summary of the article. Far more pertinent is the communicative intent of the
graphic as it relates to the overall document (the message level). Thus, SIGHT’s
intention recognition module [15] applies an inference model (including Bayesian
networks) to reason about the communicative signals contained in the graphic
(based on attributes derived from statistical tests, cognitive psychology research
into perceptual task effort, and visual features) to identify the intended message
of a bar chart (e.g., rising trend, rank of an entity). Recent work has extended
this to line graphs [32, 33] and a subclass of grouped bar charts [3].

Once the communicative intent has been identified, the system extracts addi-
tional salient propositions that expand on the graph’s intended message. On the
basis of human subjects experiments, the propositions are marked with varying
levels of importance depending on the intended message and visual features of
the graph. These propositions, along with the intended message, represent the
knowledge conveyed by the graphic and capture the message-level content that
the graph should contribute to the summary of the document. The propositions
capture a variety of concepts, including time span, degree of volatility, excep-
tions in trends, and entity comparisons. The inferred message and extracted
propositions are added to the semantic model, making connections to concepts
previously derived from the text as appropriate. The SIGHT system is already
capable of extracting the most salient propositions from simple bar charts [7],
and current efforts are working to extend this capability to line graphs and
grouped bar charts as well.

3.3 Knowledge Representation

For our knowledge representation system, we use KRISP (“Knowledge Repre-
sentation In SParser”): a system of typed, structured objects organized under
a foundational ontology [22]. The PSRs recognized by Sparser are stored in
KRISP as instantiations of pre-defined categories in a model. As Sparser ob-
tains more and more information about a particular object, the corresponding
entry in the model becomes more complete (i.e., “filled-out” or “saturated”). In
addition, meta-information relating to the concept, such as document structure
(e.g., position in the text) and the use of rhetorical devices (e.g., appearance
in a comparison by means of juxtaposition), is included in the model as well.
Finally, the model stores the original phrasings used in the source document
to express each concept in the form of tree-adjoining grammar (TAG) deriva-
tion trees, which are the underlying syntactic representation for Sparser; these
phrasings are made available for use during the generation phase.

The semantic model of the text built by Sparser is extended to cover the
entire multimodal document by decomposing the intended message and proposi-
tions extracted from the graphics by SIGHT and inserting this information into
the model. Though the graphs often contain material not repeated in the text,
there is usually a high degree of connectedness between concepts presented in
the text and those in the information graphics. This is represented in the model
by instantiating the new objects and relationships introduced by the graphs,



forging new connections to existing entries, and filling the slots of previously-
observed PSRs as appropriate. In addition, mirroring the document structure
and rhetorical device details associated with the text-based concepts, the propo-
sitions extracted from the graphic are marked with importance values derived
from the human subjects experiments. These ratings are influenced by the in-
tended message and visual characteristics of the graph.

Sample Semantic Model Figure 2 offers a high-level overview of the seman-
tic model built for the Medtronic article mentioned in Sect. 3.1, while Fig. 3
provides a detailed look at a zoomed-in section of the same model. Each node
in Fig. 2 represents an individual concept recognized in the document either by
Sparser or the graph understanding component. The name indicates the concep-
tual category with a number to distinguish between instances. In the interest of
space, individual attributes of model entries have been omitted from this dia-
gram, but are available in Fig. 3. Lines connecting nodes indicate a semantic link
between the corresponding concepts (i.e., one fills an attribute slot of the other).
In addition to entities from the text recognized by Sparser, this diagram also
shows the overall intended message (ChangeTrend1) and informational proposi-
tions (e.g., Volatile1) the SIGHT analyzer extracted from the graphic. This way,
information gathered from text and graphical sources can be integrated at the
semantic level regardless of the format of the source.
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Idiom1

BeatForecast1

EarningsForecast1

EarningsReport1
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Prediction2
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Fig. 2. High-level (low-detail) representation of semantic model for Medtronic article.

Figure 3 zooms into a portion of the model to show more detail for individual
concepts. The top section of each box contains the category name and instance
number, the middle section shows various attributes with their values (if any),
and the bottom section lists the original phrasings expressing these concepts



P1S4: "a 12-month
    target of 62"

Person: <Person 1>
Company: <Company 1>
Price: $62.00
Horizon: #12_months

TargetStockPrice1

P1S1: "medical device
    giant Medtronic"
P1S5: "Medtronic"

Name: "Medtronic"
Stock: "MDT"
Industry: (#pacemakers,
    #defibrillators,
    #medical devices)

Company1

P1S4: "Investment firm
    Harris Nesbitt's
    Joanne Wuensch"
P1S7: "Wuensch"

FirstName: "Joanne"
LastName: "Wuensch"

Person1

Fig. 3. Low-level detail of model showing concepts used in Sect. 4 sample output.

(formally stored as a synchronous TAG). Attribute values in angle brackets (<>)
are references to other concepts. Hash marks (#) denote a symbol that has not
been fully instantiated as a concept in the current model.

Encapsulating Document Structure The model also tracks various details
regarding document structure. Each recorded expression is marked with a sen-
tence tag (e.g., “P1S4” stands for “paragraph 1, sentence 4” as seen in Fig.
3), indicating exactly where each concept appeared in the text. This allows the
content rating metrics to take into account the location of a referent, whether
mentioned in the title or buried in the middle of a paragraph, when determining
salience. Information obtained from graphical sources receives a similar treat-
ment: entries are marked with importance values derived from our analysis of
the corresponding propositions (e.g., due to their rating in our human subjects
experiments). As such, the fact that a particular concept is featured prominently
in an information graphic is considered during content rating. Certain rhetori-
cal devices that highlight a concept’s significance are accounted for as well and
represented as distinct entries in the semantic model (e.g., Comparison2 and Id-
iom1 in Fig. 2). We can accomodate documents of any length, limited only by the
storage and processing capacities of the computing environment. Dealing with
longer documents is not necessarily more difficult than shorter ones. Articles
with a high degree of focus on a central theme tend to result in elaborating and
extending existing concepts, rather than introducing new ones. As a result, the
corresponding semantic model can increase in detail (“saturation level”) more
so than in size. Additionally, the model can be adapted to accomodate informa-
tion from multiple documents by inserting and connecting new concepts while
tracking their source, thus facilitating multi-document summarization.

Enhancing Expressibility Although they are represented in Fig. 3 as strings,
the original expressions used to realize the PSRs recognized by Sparser are
stored in the semantic model as parameterized synchronous TAG derivation
trees. These trees are used as the “raw material” for realizing the corresponding
referents and relationships in text during the generation phase [24]. The set of
observed expressions is augmented by a large set of built-in constructions used
to realize common semantic relationships such as “is-a” and “has-a,” as well
as constructions for the types of messages and propositions the SIGHT system



extracts from the graphics. This enables the generation of novel sentences to
build an abstractive summary of the extracted information, albeit with some
reused and “canned” expressions. Nearly 80% of human-authored summaries
are produced using a cut-and-paste method of re-combining original sentences
in new ways [18]. Thus, we view our approach as a roughly analogous process at
the surface level (except we actually encode the underlying semantic representa-
tion), “cutting” semantically-relevant phrases and “pasting” them together with
generalized constructions to generate abstract summaries.

3.4 Rating Content

Once the document analysis phase is finished and the semantic model is com-
plete, the model is then analyzed to discover which pieces of information con-
veyed in the document are most salient. Intuitively, the entries in the model that
contain the most important information, and which are highly connected to other
important entries, are the ones that ought to be included in the summary. Sev-
eral factors5 are used to determine the importance of information extracted from
the document and stored in the semantic model:

1. Completeness of attributes: the percentage of filled-in slots for the PSR (i.e.,
“saturation level”), and the importance of the entries filling these slots (a
recursive value)

2. Number of connections/relationships with other PSRs, and the importance
of those entries (a recursive value)

3. Number of expressions realizing the referent in the document text (similar
to frequency)

4. Salience based on document structure, rhetorical structure, and importance
as assessed by the graph summarization algorithm

3.5 Content Selection

Scoring the model based on these factors produces a set of weights for each entry.
These weights are passed along to the graph-based content selection framework
developed for the SIGHT system [8], which iteratively selects concepts to be
conveyed in the summary according to apriori importance, related and redundant
information, and discourse history. Using this approach, we are able to include
concept completeness, prevalence, and discourse structure captured by the model
weighting, as well as incorporate relationship-based centrality assessment.

3.6 Surface Generation

Once the most salient entries in the semantic model have been selected for in-
clusion in the summary, the surface generation process begins. The previous

5 Factors 1, 2, and 3 are similar to the dominant slot fillers, connectivity patterns, and
frequency criteria proposed by Reimer & Hahn [29].



version of SIGHT [7], which generated descriptions of bar charts only, relied on
FUF/SURGE [13] to realize the summaries of graphs in natural language. A large
set of templates were used to combine and realize various predicates describing
bar charts. However, in order to produce the wider range of constructions nec-
essary to accomodate the article text, and to take advantage of the variety of
expressions observed by Sparser and accumulated in the model, the implemen-
tation currently in development uses a modern version of Mumble-86 [25] to
handle surface realization. For the concepts in the model chosen for inclusion
in the summary, we consult the collection of expressions described in Sect. 3.3
and choose from amongst the available options those having the best “fit” (i.e.,
compatible via substitution or adjunction of TAG trees) enabling these units to
be assembled into sentences that are syntactically and semantically valid.

4 Implementation Status

This project is a work in progress and has thus far focused on building the seman-
tic model from text and information graphics. The semantic grammar for Sparser
that we have extended is presently capable of producing a nearly-complete parse
for several texts in the business news domain (such as the Medtronic article). The
SIGHT system is capable of full processing of many simple bar charts (see [10] for
limitations), and can identify the intended message in line graphs and grouped
bar charts. We are currently working on rating the importance of informational
propositions extracted from line graphs, and decomposing these propositions for
incorporation into the semantic model. The content rating system remains to
be fully implemented and fused with the existing graph-based content selection
framework. Finally, a prototype has been developed to use the expressions ob-
served by Sparser for the realization of novel sentences [24], but this component
still needs to be integrated with the content rating and selection module. Based
on the model built from the Medtronic article, if the resources to be selected by
the not-yet-operational content planner are instead chosen by hand, the surface
realization component produces the following one-sentence summary:

Wuensch expects a 12-month target of 62 for medical device giant Medtronic.

Company1 (“Medtronic”) and Person1 (“Joanne Wuensch,” a stock analyst) are
the two most prominent concepts in the model (Fig. 2). However, there are no
direct links between these concepts, meaning none of the collected phrasings can
express them both at the same time. Instead, by using the phrasing provided by
a third concept, TargetStockPrice1, we are able to combine all three concepts
(via substitution and adjunction operations on the underlying TAG trees), to-
gether with a “built-in” realization inherited by the TargetStockPrice category
(a subtype of Expectation – not shown in the figure), into the final surface form.

5 Evaluation

Final system evaluation will not be possible until the implementation (in progress)
is capable of automatically producing surface output. Summaries generated by



our system will be compared to those of human authors and others created by
extractive methods. We will use preference-strength judgment experiments [1] in
order to test multiple dimensions of preference (e.g., clarity, completeness). We
will also evaluate summaries generated both with and without considering the
graphical content, in order to assess the benefits of integrating the contributions
of the non-text modalities in the representation of the multimodal document.

6 Future Work

Sparser and KRISP currently require substantial manual effort to build the lin-
guistic and knowledge resources necessary to adapt the system to new domains.
Individual grammar rules and ontology definitions must be hand-written by an
expert and checked against a corpus of domain texts. Presently, Sparser has
decent coverage in the business domain and a few others, but the difficulty of
increasing the coverage for broader applications affects scalability. For the im-
plementation currently in development, we are manually extending an existing
Sparser grammar on an as-needed basis. While it is relatively trivial to adapt
to small changes in an existing domain, adapting to radically-different domains
requires a significant amount of resources to be built from the ground-up. In
order to automatically adapt the system to new and diverse domains, large-scale
learning of additional grammar rules and ontology definitions will be necessary.
Promising developments in learning syntactic patterns and ontological relations,
as well as machine reading, inspire us to investigate the possibility that these re-
sources may be induced automatically. For example, the Never-Ending Language
Learning (NELL) project [5] extracts information from the web in order to ex-
tend a structured knowledge base. Similar techniques might be able to build the
resources used by our system via automatic domain modeling, with the free-text
patterns learned by NELL forming the basis of new Sparser grammar rules.

7 Conclusion

Our approach to automatic summarization of multimodal documents relies on
a semantic understanding of text and graphics to construct a unified concep-
tual model that serves as the basis of generating an abstractive summary. By
integrating the knowledge obtained from the graphic with the knowledge ob-
tained from the text at the semantic level, we are able to produce an abstract
that treats the entire multimodal document as a single, cohesive message, rather
than an assortment of disconnected utterances. This method will generate sum-
maries that are more human-like in nature, while not suffering from coherence
and other readability issues related to traditional extractive techniques.

References

1. Belz, A., Kow, E.: Comparing rating scales and preference judgements in language
evaluation. In: Proceedings of the 6th International Natural Language Generation
Conference. pp. 7–16. INLG 2010, ACL, Trim, Ireland (July 2010)



2. Bhatia, S., Lahiri, S., Mitra, P.: Generating synopses for document-element search.
In: Proceeding of the 18th ACM Conference on Information and Knowledge Man-
agement. pp. 2003–2006. CIKM ’09, ACM, Hong Kong (November 2009)

3. Burns, R., Carberry, S., Elzer, S.: Visual and spatial factors in a bayesian reasoning
framework for the recognition of intended messages in grouped bar charts. In:
Proceedings of the AAAI Workshop on Visual Representations and Reasoning. pp.
6–13. AAAI, Atlanta (July 2010)

4. Carberry, S., Elzer, S., Demir, S.: Information graphics: an untapped resource for
digital libraries. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. pp. 581–588.
ACM, Seattle (August 2006)

5. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: Proc. of the 24th
Conference on Artificial Intelligence. pp. 1306–1313. AAAI, Atlanta (July 2010)

6. Chester, D., Elzer, S.: Getting computers to see information graphics so users do
not have to. In: Proceedings of the 15th International Symposium on Methodologies
for Intelligent Systems, Lecture Notes in Artificial Intelligence 3488. pp. 660–668.
ISMIS 2005, Springer-Verlag, Saratoga Springs, NY (June 2005)

7. Demir, S., Carberry, S., McCoy, K.F.: Generating textual summaries of bar charts.
In: Proceedings of the 5th International Natural Language Generation Conference.
pp. 7–15. INLG 2008, ACL, Salt Fork, Ohio (2008)

8. Demir, S., Carberry, S., McCoy, K.F.: A discourse-aware graph-based content-
selection framework. In: Proceedings of the 6th International Natural Language
Generation Conference. pp. 17–26. INLG 2010, ACL, Trim, Ireland (July 2010)

9. Demir, S., Oliver, D., Schwartz, E., Elzer, S., Carberry, S., McCoy, K.F.: Interactive
SIGHT into information graphics. In: Proc. of the 2010 Int’l Cross Disciplinary
Conference on Web Accessibility. pp. 16:1–16:10. ACM, Raleigh, NC (April 2010)

10. Demir, S., Oliver, D., Schwartz, E., Elzer, S., Carberry, S., McCoy, K.F., Chester,
D.: Interactive SIGHT: textual access to simple bar charts. The New Review of
Hypermedia and Multimedia 16(3), 245–279 (2010)

11. Demner-Fushman, D., Antani, S., Simpson, M., Thoma, G.R.: Annotation and
retrieval of clinically relevant images. International Journal of Medical Informatics
78(12), 59–67 (2009)

12. Dumontier, M., Ferres, L., Villanueva-Rosales, N.: Modeling and querying graphi-
cal representations of statistical data. Web Semantics: Science, Services and Agents
on the World Wide Web 8(2-3), 241 – 254 (2010)

13. Elhadad, M., Robin, J.: An overview of SURGE: a re-usable comprehensive syntac-
tic realization component. In: Proceedings of the 8th International Natural Lan-
guage Generation Workshop (Posters & Demos). ACL, Sussex, UK (June 1996)

14. Elzer, S., Carberry, S., Chester, D., Demir, S., Green, N., Zukerman, I., Trnka, K.:
Exploring and exploiting the limited utility of captions in recognizing intention in
information graphics. In: Proceedings of the 43rd Annual Meeting of the Assn. for
Computational Linguistics. pp. 223–230. ACL, Ann Arbor (June 2005)

15. Elzer, S., Carberry, S., Zukerman, I.: The automated understanding of simple bar
charts. Artificial Intelligence 175, 526–555 (February 2011)

16. Elzer, S., Schwartz, E., Carberry, S., Chester, D., Demir, S., Wu, P.: Bar charts in
popular media: Conveying their message to visually impaired users via speech. In:
Ras, Z., Tsay, L.S. (eds.) Advances in Intelligent Information Systems, Studies in
Computational Intelligence, vol. 265, pp. 275–298. Springer (2010)



17. Fiszman, M., Rindflesch, T.C., Kilicoglu, H.: Abstraction summarization for man-
aging the biomedical research literature. In: Proceedings of the HLT-NAACLWork-
shop on Computational Lexical Semantics. pp. 76–83. ACL, Boston (May 2004)

18. Jing, H., McKeown, K.R.: The decomposition of human-written summary sen-
tences. In: Proc. of the 22nd Annual Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval. pp. 129–136. ACM, Berkeley (August 1999)

19. Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: Proceed-
ings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. pp. 68–73. ACM, Seattle (July 1995)

20. Lin, C.Y.: Training a selection function for extraction. In: Proceedings of the 8th
International Conference on Information and Knowledge Management. pp. 55–62.
CIKM ’99, ACM, Kansas City (November 1999)

21. McDonald, D.D.: An efficient chart-based algorithm for partial-parsing of unre-
stricted texts. In: Proceedings of the 3rd Conference on Applied Natural Language
Processing. pp. 193–200. ACL, Trento (March 1992)

22. McDonald, D.D.: Issues in the representation of real texts: the design of KRISP. In:
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