
1

In the proceedings of the RAGS Workshop, November 12-13, 1999, Edinburgh

A Rational Reconstruction of Genaro

David D. McDonald
14 Brantwood Road, Arlington MA USA

davidmcdonald@alum.mit.edu

The Genaro text generation system was developed by Jeff Conklin for his Ph.D.
thesis at the University of Massachusetts (Conklin 1983, Conklin & McDonald 1982). It
was based on the hypothetical but plausible output of a vision system that examined
pictures of houses. In keeping with the trend of the vision research then underway at
UMass (Parma et al. 1980), the scene-understanding system was taken to be able to
construct a set of facts or observations about the picture that it was viewing, and to
assign each of these facts a rating according the relative visual salience of that element of
the picture as compared with the others. Genaro’s task was to render this output as a
paragraph of fluent English text that captured this salience.

Genaro was the first substantial system to be layered on top of the original version
of Mumble (McDonald 1980, 1984). In so doing, it exposed technical and theoretical
flaws in that design, flaws that influenced the later work of my group, ultimately leading
to the development of Meteer’s theory of Text Structure and expressibility (1992) and to
our reference model of generation (McDonald, Meteer & Pustejovsky 1987).

The goal of our model (which we will abbreviate as MMP) was to establish a
theoretical basis by which one could evaluate alternative generation architectures in terms
of their relative efficiency. We were trying to bring to generation the same kind of
measures as have been available to parsing from its earliest days.1 Because realistic
language generation is always done at the behest of some speaker (human or artificial),
MMP takes the essence of the task to be how to find a mapping between the situation
that the speaker takes itself to be in and some utterance2. Frequent, simple situations
(greeting a friend while passing in the hallway) should have simple, direct mappings; the
unfamiliar and complex (a job interview, a new talk) may require extensive planning and
replanning.

This position paper begins by describing how Genaro would be rewritten today
given the experience and theoretical developments of the last fifteen years.3 This

1 E.g. Earley’s algorithm has a worst case complexity of O2N3 in the size of the grammar and the length

of the input text respectively and is O2N for deterministic grammars.
2 A utterance here may be of any length so long as it is a single ply in the larger discourse. Situations are

composite instances of instance types following Barwise & Perry (1983, Devlin 1991).
3 We expect to do an implementation over the course of the next six to nine months. Particulars described

here have either been implemented in other instantiations of our paradigm, such as Meteer’s, or come
from the implementation of other generation systems that we have completed in recent years, or are
expressly indicated as how we anticipate the implementation will go.

2

reconstruction will provide a concrete example of how we construe the generation process
today (a small evolution from our model of 1987), and from its relationship to the
reference model proposed by the RAGS group.

1.0 Genaro’s Original Architecture

Genaro produced single paragraphs of, for its time, quite fluent prose starting from a
stream of simple propositions representing the attributes of the objects it described. The
same source could be made to yield literally dozens of alternative paragraphs by varying a
set of parameters that governed such things as how much detail was provided for each
object and the length of sentences, (unpublished work by James Pustejovsky). Below is a
canonical example of its output. The parameter settings that led to it seem to provide one
of the best fits to the set of human-generated descriptive paragraphs collected in
Conklin’s study at the beginning of his work (see Conklin et al. 1983).

“This is a picture of a white, New England house with a fence in front of it. The door
of the house is red and so is the gate of the fence. There is a driveway next to the
house. Next to the driveway are some trees. In the foreground is a mailbox.”

1.1 Representational Levels
These texts were produced by an architecture comprised of three levels of

representation that were constructed sequentially and incrementally by three successive
processes. We will begin by describing the levels. The first was a representation of the
objects and relationships depicted in the picture being described. This level was logically
an internal part of the vision system in whose service the generator was acting (the
‘speaker). However, since the judgements of the vision system were only simulated in
Genaro, the level was actually a standalone collection of objects, essentially a set of
individuals and simple propositions over them. The objects were implemented using a
local treatment of KL-ONE. These included a set of individuals (nexuses) such as the
house, the fence, the driveway and such; and there was a set of types for spatial relations
and simple attributes (properties). When the type distinctions do not matter we will refer
to these as “units”. Each object and proposition included a numerical salience rating. Here
is a sample:

#<House house-1 1.0>
#<Gate gate-1 .7>
#<in-front-of house-1 fence-1 .85>
#<two-story-building house-1 .38>

At the time, we talked about this as the ‘message level’ of the generator. Now we
would call it simply a semantic model. ‘Semantic’ because the minimal representational
units that comprise it are all expressible (Meteer 1992). Each could, in principle, be
realized in isolation as an utterance, albeit a very small one. In RAGS terms, it would
appear to be concrete semantic stuff, a judgement we will discuss at some length later.

The second level of representation was the result of rhetorical decisions about how
to assemble the units into sentence-length directives to Mumble. These directives were
referred to as ‘r-specs’ (rhetorical specifications). They incorporated units from the
model and also special objects that Conklin dubbed ‘rhetoremes’, i.e. units that have no

3

correspondence in the model and are inserted strictly for their rhetorical function; the
name is to indicate that they are the smallest units of rhetorical information that the
system has.

Here is the expression for the r-spec that would be realized as “This is a picture of a
white house”

(RSPEC NO!
 BODY
 (ELMT1 RHETOREME introduce (house-1)
 (house-1 (SUPERC house)
 NEWITEM))
 (ELMT2 PROPERTY color-of (house-1 white-1)
 (house-1 IBID)
 (white-1 (SUPERC white))))

In RAGS terms this has to be abstract syntactic stuff since it is the input to
syntactic realization. It is certainly a text plan.

The third level of representation was Mumble’s surface structure. This was and
continues today to be a functionally annotated phrase structure, not too dissimilar in
concept from the surface level of representation used in a systemic functional grammar
such as Davey’s (1974) or Kempen & Hoenkamp’s (1987).. Each node in the tree is
labeled with features and active triggers. We say that the node is contained within a ‘slot’,
where the features in the slot can constrain what realizations are permitted, such as
forcing clauses to be tenseless. Slot features are also the source of function words, and the
source of punctuation as well as richer orthographic effects such as markup tags. Details
of this level are given in Meteer et al. 1987.

1.2 Processes
Conklin called the first (earliest) of the three processes operating over these two

representational levels ‘iterative proposing’ (“IP”). Its job was first to notice the relative
salience of the different objects in the picture, and then for each object in turn to notice
the relative salience of each of its attribute or its relationships to other objects given their
relative visual salience. This ordering defined an object stream that could, in principle,
enumerate every unit in the underlying system’s model of the picture except for the
intervention of the parameter settings that define cut-off points once an object or one of
its attributes drops below the indicated salience level.

The second process, the consumer of this stream, was a paragraph planner that
applied a simple set of rhetorical rules to assemble successive r-specs. Some of these
ensured that certain properties were always included, others were sensitive to salience;
examples include property-salient-color, relational-salience, condense-property. They
functioned by guiding the successive units from the stream into the appropriate parts of
the growing r-spec.

The rhetorical rules were grouped into ‘packets’ following Marcus (1980). Which
packet was active at a given moment determined what rules were available. Four packets
were defined: Introduce, Elaborate, Shift-topic, and Conclude, which were controlled by a
simple state-machine. The first and last amount to a schema-style of discourse

4

organization: the planner always started in Introduce and ended with Conclude (which
emitted a conventional description of the weather depicted in the picture). Introduce
created a fixed skeleton specification for the first sentence (“This is a picture of ___”) and
then automatically shifted to the Elaborate packet.

The variable governing the state machine was the ‘current-item’. This identified one
of the objects in the scene, initially the house because it had the highest salience. IP would
pass a succession of units that described the current-item to the Paragraph Planner in the
order of their relative visual salience until the salience of the next unit fell below a certain
parameter setting. The units would be considered by the rules in the Elaborate packet,
which would add them one after the other to the ongoing r-spec.

Since r-specs are realized as sentences, there was a need for a calculus within
Elaborate that would determine when the proper size for an r-spec had been reached and
that r-spec passed to Mumble and another one started. This was done by assigning a
textual weight to each type of unit and maintaining a running total as units are added. An
object had weight 0; properties were .5; relations were 1.0; rhetorical elements were 2.0;
and condensations (clause aggregations) were .5. So for example “The house has a red
door” would ‘weigh’ 1.5, while “In front of the house is a white picket fence with a red
gate and in front of that is a sidewalk with a person walking on it” would have a weight of
8.0: four properties plus four relations plus a rhetorical element for the conjunction.
Experiments showed that the optimal weight for a r-spec/sentence was 3.5.

When the next unit from the stream would push the weight of the current r-spec
about the parameter setting for sentence size that r-spec would be finished and sent off to
Mumble and another r-spec started. This would also happen when the next unit was a
meta-unit (rhetoreme) indicating that the limit on the description of the current object had
been reached and the paragraph planner was now to change to using the Shift-topic set of
rhetorical (text-constructing) rules to introduce the new current-object.

In RAGS terms, Genaro’s paragraph planner is an odd duck. It is a text planner, But
is operates over just one level of representation. There is no explicit rhetorical structure,
only immediate actions taken for rhetorical effect. There was no document structure, just
actions taken to induce the linguistic realization component to use constructions that
would signal that a new segment the text, discussing a new object had been reached. It’s
output was passed directly to the realizer, making it an abstract syntactic representation
by definition.

The third process was Mumble (the ‘1980’ version), which itself was comprised of
three interleaved coroutines. Its first received r-specs from the Paragraph Planner one at a
time as each was finished, interpreted it as a traversal pattern, and walked through it top-
down mapping each unit in the r-spec to a well-formed fragment of surface structure that
embedded the unit’s sub-elements at its leaves. The structure-constructing actions of this
first coroutine were interleaved with the operations of the second, which took the surface
structure (functionally annotated phrase structure tree) built by the first as soon as any
was ready and traversed it in prenext order (top down and left to right). The first process
resumed whenever the traversal reached unrealized units, and the surface structure was
extended dynamically.

5

Embedding the last stage of a unit’s realization within the read-out of the surface
structure was important to correctly appreciating all of the relevant context since it is
only at that point that one can know precisely which units have been realized and what
form their realization took, e.g. in order to make correct judgements about pronouns.

A third co-routine within Mumble takes the stream of lexemes generated by the
traversal and utters the words of the text. Content words are the terminal leaves of the
surface structure. Function words, including punctuation, arise from the functional
context that governs the phrase structure’s non-terminals and are added to the word
stream either as a node is entered or after the traversal of its sub-tree is finished. This
word-level process maintains its own level of representation, a fifo buffer of successive
words, against which it does such things as the morphological adjustments that implement
aux movement, adds plural and tense morphemes, determins the correct case of pronouns,
or collapses redundant punctuation (e.g. given a comma followed immediately by a period
emit just the period.

None of the structure internal to Mumble ever appears on RAGS’ radar as far as I
can tell. One possible exception is the operations that occur when embedded semantic
units are encountered during the surface structure traversal. In principle, these could do an
extensive amount of text planning (and in early work with Mumble they did), however in
Genaro the realizations are virtually all anticipated and mapped out via structure in the r-
spec.

2. Genaro Reconstructed

What is wrong with the way Genaro was done seventeen years ago, other than
changes in style? What would we change in its design today that would be a genuine
architectural improvement and not just a change for its own sake. Two problems became
apparent shortly after Conklin finished his thesis and we began to apply Genaro’s
architecture to different domains.

The first and most serious problem is that Genaro tried to leap too large a gap in
mapping directly from descriptive propositions to a linguistically complete surface
structure (from the input to the Paragraph Planner, taken unit by unit, to Mumble). For
one, the mapping tables that provided the resource knowledge for realizing the
propositions had to incorporate far more syntactic detail than actually needed to do the
job: To determine whether a given item type can be expressed as, e.g., an attributive
adjective or via a copula, we only need to know about major syntactic categories; knowing
the shape and features of the corresponding elementary trees in the TAG is completely
unnecessary (and violates the MMP dictum of minimal commitment); yet in the original
Genaro those two things (or rather their 1982 equivalents) were inextricably bound
together.

The solution to this problem in the evolution of thought in my group was to develop
a new level of representation that encoded just enough linguistic information to force
critical decisions about the choice of linguistic type to be made in such a way that
guarantees that they can be made indelibly, i.e. Meteer’s Text Structure. The Paragraph
Planner now feeds Text Structure rather than surface structure. The r-specs it used to
produce can be dispensed with in favor of constructing Text Structure.

6

Moving the linguistic constraints on assembly to the Text Structure allows
simplifications to be made to the treatment of the surface structure since it now has a
smaller burden to bear. The choice sets of the original version of Mumble had, of
necessity, covered the full range of possible surface realizations of a semantic unit. They
had to since they were the only source (representational level) of linguistic resources
available in the system. The problem is that when you try to develop any sort of
capacity for sophisticated reasoning over possible alternatives, the syntactic details that
have to be dealt with overwhelm the attempt.

The separation of choices from execution allowed us to sharpen the grammar that
Mumble uses to be virtually a standard Tree Adjoining Grammar. Its choice sets are now
identically TAG tree families – all the options are now projections of the same syntactic
category. All that remains are contextually or informationally governed variations such as
infintives vs. tensed forms, clefts vs. ‘there’ constructions, and so on.

The result of this simplification, Mumble-86, is uninteresting in the RAGS model
since it is a terminal process/level – concrete syntactic structure – and does not emit /
export in RAGS.4 The interesting question is the nature of Text Structure.

2.1 Text Structure
Structurally, Text Structure is a dependency tree of nodes connected by directed

links. Its nodes are the same units of content that came out of (in this case) IP. At this
level, however, the units are viewed as instances of a carefully chosen of semantic types.
These types can be seen as participating in a grammar of linguistically abstract
‘expressive categories’, categories that embody the distinctions that are required to
guarantee that any text structure formed from them will be expressible because they
impose constraints on what compositions of individually expressible units are valid.

When the generator starts from the conceptual representations of programs that were
not designed with natural language in mind, the effort to establish the expressive types of
its units can be complex and arbitrary, requiring its own mapping procedures. Here we
will have the luxury of using a source representation of our own design5, expressly
tailored for the semantic problems that are particular to the analysis and construction of
(English) texts. We will be able to treat the expressive categories of Text Structure as an
Upper Structure in the domain model.

As we will use them, the links in the dependency tree will annotate (define) the
constraints on what surface linguistic relationships can be used to express the
corresponding combinations of content when it is projected to surface structure. Meteer
used annotations like matrix, head, argument, and adjunct. We will use those relations as
well as somewhat more specific and surface-oriented relations such as modifier, qualifier,
or adverbial. This reflects our expectation that we should be able to assemble a grammar
for Text Structure using example-driven methods by projecting back from the
combinations found in the texts in domain specific corpora as analyzed by our language
understanding system, Sparser (see, e.g., McDonald in press).

4 It could. A fully elaborated phrase structure with annotations indicating focal or contrastive information

and information structure should be a valuable resource for driving synthetic speech.
5 KRISP. See McDonald 1994, in press, and discussion later in this paper.

7

The addition of another representational level implies the need for another mapping
process, or, as MMP would put it, a process to read out the Text Structure and assemble
the next level down. This process will be engaged once the Paragraph Planner decides that
adding another unit to the sentence it has been assembling would make it exceed its
parameter setting for content and structure and begins to move to assemble the next
sentence. Following Meteer’s lead, this target of this readout process is what Mumble-86
calls an ‘lspec’ (‘linguistic specification’).

An lspec is another dependency tree. It’s structure will always be isomorphic to the
structure of the Text Structure modulo some linear precedence decisions. Its nodes
however are the elementary trees of Mumble’s Tree Adjoining Grammar. Formally it is a
TAG dependency tree – the standard starting point for TAG derivations. There are some
interesting differences from a standard TAG, but they are not relevant to our concerns
here. If someone wanted to construct a source to drive Mumble-86 directly, this TAG
dependency tree is what they must assemble.

2.2 Buffering the unit stream
Returning to the difficulties in Genaro’s original architecture, a second problem came

from the fact the Paragraph Planner had to process each unit completely as soon it arrived
before even the type of the next unit in the stream could be known. This included the
judgement about whether the sentence under construction had accumulated enough
weight, syntactically, once that unit in hand was added, leading to a new sentence being
started regardless of what might follow in the stream. This often led to the what we called
‘orphaned’ units, where only a single unit remained in the description of the focal object,
say the house’s color, before the arrival of a ‘change focal object’ unit (rhetoreme) would
arrive and the Paragraph Planner would be forced to start a new sentence. The result could
be a sentence like “It is white”, which would be completely out of the norm for the
intended sentence length and complexity.

The fix for this problem is the introduction of an additional representational layer,
albeit a trivial one, between IP’s unit stream and the Paragraph Planner. This is just a
‘staging level’, where several units at a time are buffered to give the Paragraph Planner the
option to look at more than one unit at a time when making its decisions. A buffer of
three units should be sufficient given our work with aggregation. The arrival of a change
focus rhetoreme into the staging level acts as a block against further look-ahead since it
will necessarily force a sentence break.

3. What happens where?

Up to this point we have touched on how Genaro deals with the functional tasks
that RAGS has focused on, but we should now talk about them directly and thoroughly.
First is the question of Genaro’s fit to the canonical three stage pipeline: content
determination, sentence planning6, and surface realization.

6 We would prefer to say ‘text planning’. This choice of phrasing emphases the role of this stage as the

point of the transition between the semantic stuff used in the underlying program (the ‘speaker’ that the
generation process is working for) and the first level of linguistic stuff. Also note that in Genaro the
input to this level is not already partitioned into sentences. This is one of this processing level’s
primary tasks.

8

Genaro divides into three processes that could be given those names. Furthermore
the division is a natural one given the facts and not simply an arbitrary choice. Each
process is the exclusive user of a particular level of representation: the vision system’s
description of the picture, Text Structure, surface structure. Each makes exclusive use of a
particular body of resources or ‘reference knowledge’: the salience annotations on the
units of the description, the realization classes for each of the units’ type (in effect an
abstract semantic grammar), the elementary trees of the surface grammar. They do largely
share the same class of control structure in that they are all data-directed, but in the
MMP model this is taken to be the most efficient means of control and there is no reason
not to use it given this suite of tasks and the presumption of monotonic, on-line, indelible
processing.

Lexicalization. Genaro’s lexicalization is trivial. The types (domain-level predicates) of
the underlying system map directly to content words or fixed phrases. There is no
choosing between alternative words. The transition from semantic type to lexeme is done
as an integral part of choices made when the Paragraph Planner selects among the
alternative available for units of that type. This is because the alternatives take the form
of phrase-types in a lexicalized semantic grammar. The lexemes are implicit in the
parameter mappings that will instantiate the phrase-types when the Text Structure is
readout to construct lspecs. They do not participate in the choice criteria since within a
realization class it is based on the semantic categories of the units and the selectional
restrictions already in place within the Text Structure, not on the identity of the lexemes.
The lexemes are later projected to morphologically appropriate, concrete words inside
Mumble as the surface structure is read out.

Aggregation. In its general interpretation as the process of combining small units into
larger ones, Genaro’s Paragraph Planner practically does nothing other than aggregation. It
is also the site of the narrower interpretation of aggregation as clause (or other category)
combining. Note however that the medium that represents the ‘clause’ combination is not
comprised of syntactic objects; rather the combination is represented via the annotation
on the units within the text structure. The job of observing that some elements are shared
between units and that reducing them in thereby possible is done by the Paragraph
Planner looking at sequential pairs (opportunistically extended to triples, etc.) at the head
of the staging level’s buffer that holds the units coming out of IP.

The choice between the possible surface realizations of the reduction, e.g. “(both) the
door and the house and the gate of the fence are (both) red”, “the door of the house is red
and so is the gate of the fence”, will be done as part of the reading out of the Text
Structure to form lspecs. The criteria for the choices in the original Genaro amounted to
flipping a coin and hoping that reading enough of the results would provide some insight
into what the real criteria might be. We remain at that state of knowledge today, though it
is possible that work underway in inverting a corpus of texts (corporate quarterly
earnings reports) via Sparser to reverse engineer the read-out and Text Structure formation
decisions may at least provide a register-specific textual criteria, namely match the
patterns that have actually been seen.

Rhetorical structuring. The rhetorical relationships between the elements of one of
Genaro’s texts are not particularly deep. As discussed earlier, the only substantive

9

rhetorical moves are elaborate and shift-topic. These govern the disposition of the
individual units of content as they are read out of the initial stream, mapped to
presentation types, and entered into the Text Structure, and, quite notably, depend for
their accurate results in being treated as a sequential, salience-driven stream of text-
constructing decisions. Absolutely nothing would be gained and much might be lost by
trying to capture this rhetorical structure, such as it is, in its own level of representation
where all of the information had to be present at one time.

Referring Expressions. Genaro does not plan the content of its referring expressions so
much as stumble into them via the exigencies of what the salience of the properties and
relationships that the objects it describes happen to be in and the parameter settings in
force at the time. Whether a given property ends up as a modifier or qualifier in a referring
expression or a statement in its own right depends on factors that are not planned.

As it happens, in Genaro’s domain of house scenes there is no need to distinguish
two objects of the same type since they simply will not appear in the model of the
picture. Consequently explicit reasoning about how to incorporate pertinent
distinguishing attributes (see, e.g., Bateman 1999) is not needed.

Such ‘reasoning’ as does occur involves the use of determiners and pronouns. It is
simple but effective in this domain. Initial references to particular objects (which will
always be couched in terms of the objects’ types; nothing in this domain has a proper
name) are given indefinite determiners.7 Subsequent references will get definite
determiners unless the object in question is the current-item, in which case it is always
pronominalized; no object that not the current-item at the time is ever pronominalized.8

Ordering. In Genaro, the order in which a particular fact was introduced was strictly a
function of its visual salience. This means in effect that the ordering is determined at an
extremely high level, namely as part of the judgements of the scene recognition system
that analyzed the picture and constructed the semantic model that Genaro (as simulated)
works from. Locally within the Paragraph Planner the ordering decisions that take place
are not a matter of deciding linear precedence so much as functional role. Realizing a
property as a qualifier rather than a modifier, for example, reflects a higher salience for
that property since it has the effect of conveying a narrower, more specific classification,
e.g. Genaro would always say “white New England house” rather than “New England-
style white house” since the hourse style, if present in the model, will usually receive a
higher salience than the color unless, of course, the color happens to be out of the
ordinary such as the purple Victorian down the street from us in our neighborhood.9

Segmentation. Paragraph level segmentation is not an issue in Genaro since by design it
was only capable of producing single paragraphs. Its job was to aggregate the individual

7 The choice of “a” vs. “an” is phonetic and done quite late in the process at Mumble’s word-stream level.
8 This has led to some interesting situations when we looked at the output of scenes with two objects of

comparably high salience (the house and the fence in the example given earlier), since some proposed
item sequences would introduce the gate as part of a descriptive relationship to the house and later
references to the gate while the house was still the current item could feel strained when they were not
pronominalized.

9 Though note that even here a color is not capable of sustaining a referring expression on its own since
has no nominal form, and that “Victorian” is available as a style with a nominal realization where “New
England” (qua house type) is not.

10

units passed to it in order of their salience into sentence of suitable length given the
character of the information they carried (a weight of about 3.5, see above), and also to
clearly indicate the segmentation of the paragraph into a succession of descriptions of the
picture’s salient objects through the use of syntactic constructions that carried the
appropriate rhetorical effect. There-constructions and fronted locative phrases, for
example, always appeared at the beginning of the description of the next current item and
never within an item’s description no matter how many sentences it might have.

Centering / salience / theme. The task set for Genaro did not require it to maintain any
sort of elaborate machinery for reflecting the information structure of its source model in
the textual structure of its paragraphs. The single notion that the object in focus and only
that item, i.e. the current item within the Paragraph Planner, should be pronominalized
was sufficient.

4. What are Genaro’s levels and representations as data structures

The substantive question for this workshop is whether Genaro’s representational
levels and the units that comprise them have a plausible fit to those presently defined in
the RAGS project. In particular, what is the nature of the I/O these levels and could it
reasonably be emitted as expressions that conformed to what RAGS is proposing.

4.1 Concrete Conceptual Structure
Taking the RAGS levels up in the order they appear in the annual report, we begin

with the so-called ‘concrete conceptual structure’. This is the mechanism proposed for
providing uniform access to the information within the speaker’s ‘knowledge base’. Note
that we would prefer to talk about the speaker’s model of their situation as it is relevant
to their wanting to say something, since their knowledge base will be vast and virtually all
irrelevant to their present goals. Be that as it may, we can take ‘knowledge base’ as code
for the set of assumptions being made about the objects that comprise the model, in
particular that they can be construed as (preferably) a classification hierarchy of objects
with roles in, e.g., the KL-One tradition.

The task for this representation is the export of the relevant units from the speaker’s
model in a form that can be expressed as stuff that you can say in XML – a melieu of
characters rather than pointers and structured objects within a live computational process.
As you may properly infer from this choice of phrasing, all of Genaro, and its (simulated)
speaker lives in a single live computation and works by passing pointers to typed
structured objects.10 Could we emit them as cdata item ids and role attributes that could
then be used as value accessors? Of course. It’s only a matter of writing the code (and
finding the time).

Do we think that a Penman-style inquiry semantics is the correct way to approach
the determination of content? (Given as the justification for RAGS choice in section 4.5
of the report.) Absolutely not. Any realistic speaker that has a reason to communicate

10 If we happened to need to implement the various components Genaro over a number of different virtual

machines, say in Java, we would still pass pointers, albeit via RMI or CORBA-based serializations of
the objects as they passed from one machine to another. These serializations are not the kind of thing
one would care to express in XML however.

11

knows what it wants to say and knows its conceptual (if not its semantic) structure
better than any of the downstream components of the generator. It should tell those
components what content to express just as Genaro does through its salience order stream
of units. Our general arguments are presented in some length in McDonald, Meteer, and
Pusteyovsky 1987.

If we did publish the contents of the model and its schematic structure (i.e. its set of
types, set of roles, and the layout of its classification hierarchy) we would have to fudge
the representation of salience somewhat if all we are given to work with is roles and ids.
Certainly we could make salience another role available on every object (n.b. that would
require multiple inheritance), but as Conklin saw it in the UMass VISIONS system, the
output of the scene recognition process gave him an already assembled sequence; all he
then had to do to get the unit stream was apply cutoff points to it. Of course an outside
process could reconstruct this sequence for itself by searching the entire (sic.) knowledge
base of entities and sorting it on the salience role. But the correct thing to do would be to
export the sequence per se, cutoffs in place, i.e. to do the content determination within
the process space of the model and take advantage of all its pre-existing structure.

4.2 Rhetorical and Document Structure
As we said earlier, Genaro has no place for a representational level that captures

strictly rhetorical information, be it abstract or concrete.11 Could we emit one (a concrete
one) if forced? No. Genaro has processes that use a knowledge of rhetoric to achieve their
goals of reflecting the salience of the elements of the picture in the structure of the text,
notably knowledge of how to set off the description of one object from another within the
body of a paragraph. But this is knowledge that is applied at the time that it is needed.

One of the dictums of MMP is that the only circumstances in which there is a
requirement that the result of a decision to be given an explicit representation is when the
consequences of the decision cannot be all be realized at the time the decision is made.
Genaro’s rhetorical decisions, all within the Paragraph Planner, are immediately reflected
in a particular extension of the Text Structure and need no other representation. Since we
do not maintain a rhetorical level inside Genaro we cannot emit one.

The same reasoning applies to any document level of representation. Textual
boundaries are determined on the fly. There happen to be no intra-sentential boundaries,
though we can easily imagine the need for them in registers that employ markedly longer
sentences with a genre-specific structure, especially if they were to be uttered by a
speech system rather than printed out as text; earnings reports are a prime example. The
decisions to segment the content into sentences are reflected immediately by the
Paragraph Planner sending the ongoing segment of Text Structure off to be read out and
uttered by Mumble. The order of the text over all directly reflects the relative visual
salience of the objects in the picture and thus is effectively already established with the
speaker’s model before actual generation ever begins.

11 And, frankly, in the case of rhetorical structure, the abstract / concrete distinction in rhetorical structure

appears forced and difficult to justify outside of a framework that assumes that all levels of stuff will
begin in an abstract form and later appear in a concrete form requiring, perforce, that it apply here as
well.

12

We quite agree that extended texts incorporate a rich body of document-level
structural information. To what extend this level must be planned in advance of its
realization (and thus require an explicit representation) is a question on which we are
agnostic for lack of experience.

4.3 Abstract Semantic Representation
Abstract semantic representation is characterized in the report as “the first stage at

which conceptual information is packaged together in ways that foreshadow an eventual
linguistic reali[z]ation” (pg. 31.) From this perspective, all of the information that
populates the ‘conceptual’ model that Genaro draws from is semantic. If we imagine the
integration of Genaro with the actual UMass VISIONS system (which would have been
possible about ten years after Conklin’s work), the stuff prior to the semantic model
would have been things like light gradients, Gaussian densities, and schematic two and a
half dimensional object models – not the sort of stuff one represents with a
specialization-based type hierarchy and accesses with KBIds. VISIONS’ conclusions as
to what it had seen in a picture were semantic objects from the moment they came into
existence. They could not be anything else since the whole notion of understanding a
picture as a depicting objects in the world is to recognize within it things that we are able
to characterize linguistically.12

The question of whether Genaro’s semantic model is abstract or concrete hinges on
whether it is language independent, something that we never attempted. Alternatively
there is the matter of whether there is any “translation” between the schema that comes
out of the conceptual model (types and roles) and the what is actually used by later
components in the generator; the answer to which is no. On that basis we conclude that
we dealing with ‘concrete’ semantic objects.

Though events or even really states are not a part of Genaro’s domain, we have
always believed in Davidson’s notion that events and their kin can be quantified over. To
be specific, we most closely follow the treatments of Emmond Bach and refer to all such
stuff as ‘eventualities’.

Looking at the example of abstract semantic information given in the XML of section
7.4.2, we do have to wonder a bit about how far away from economically mainstream
European languages one can go with that an still get an isomorphic translation to concrete
equivalents for it. Would it preserve its factorization when rendered into the proximal
source for an agglutinative language? As it stands, the presence of predicates like ‘top of’
or ‘with’ make it feel much more like a gloss of the original English text in the style of Bill
Martin’s mid-1970s work in using natural language directly (if deterministically) as the
representation language.

The idea being conveyed in 7.4, that we are emitting the cdata equivalent of pointers
into the knowledge base is reasonable enough if the speaker (the owner of the knowledge
base) is not in a position to assemble the concrete semantic objects itself – and Genaro
can do that.

12 Yes, pictures affect people in myriad other ways that one cannot put into words, but these responses are

not (yet) accessible to computer vision systems either.

13

4.4 Concrete Semantic Representation
Turning to the discussion of concrete semantic representations, it would appear that

much is made of whether the representational stuff that crosses over to the next level
(whatever that happens to be) is a set of minimal propositions versus an object with
internal structure that embeds references to other objects. The first taken as typical of an
abstract semantic representation, and the second as typical of a concrete one, i.e. strongly
oriented towards linguistic realization, while the abstract case is only loosely so via its
apparent lexicalization. In the case of Genaro, and particularly of our other work
currently underway, taking this distinction as written would be a red herring.

On the one hand, the units in the stream out of the content determination module
(IP) are deliberately minimal and could be taken, in isolation of their computational
context, as being propositions that can standalone. However, what is really going on, from
a theoretical and soon to be actual standpoint, is that the stream is the result of reading
out a highly structured and thoroughly interconnected model; in effect serializing it
according to some rhetorical criteria, in this case visual salience.

Looking at the stream from the other direction, the receiving module that is
responsible for (beginning to) actually give it some explicitly linguistic content and
structure, our Paragraph Planner that assembles the Text Structure, this module wants the
semantic units it receives to be minimal. That way it can get the maximal flexibility to
array the units as compositions of annotated expressive types. If it received a single
structure that was a ‘recursive’ representation of, say, a three clause, ten element sentence
(typical in the financial domain), it would have to first decompose it back into its minimal
elements and sub-relations before it would have a chance of doing an adequate job of
fitting the it into the current discourse and informational context.

This to say that we could not, realistically, emit a concrete semantic representation
that resembled ESPL. It would be too alien to the sort of linguistic reasoning that we do.
But at the same time we should emphasize that our ‘minimal’ units are typed structured
objects with typed slots that make reference to other objects. Written out as an
expression they would look more like the ‘recursive’ composite on page 37 of the report,
and not at all like the propositions just above it.

Having said that, a crucial difference should be pointed out regarding semantic roles.
Simplifying somewhat, it would be correct to say that in Genaro their term set is strictly
domain-specific (except insofar as its upper structure ends in expressive categories that
are virtually all linguistically motivated): ‘biter’ and ‘bit’ rather than ‘agent’ and
‘affected’.

We can do this and still have a very much linguistically-oriented concrete semantic
structure because every category (relation type) in one of our domain models is associated
directly with the linguistic schema(s) that can realize it and (eventually) a history of the
ways it has actually appeared in (various) corpora. The details would take us much too
far afield, but it has the effect of letting us have our cake and eat it too.

With this caveat, we could readily emit the expressions that fit the DTD for RAGS
concrete syntax. At the same time we would obviously have to include a great deal of
reference information (probably our domain-model schema with their surface-grammar

14

mappings) so that a project that required classic, Filmore semantic relations could attempt
to derive them.

4.5 Abstract Syntactic Representation
This takes us to abstract syntactic representations – the last stop of the RAGS

journey since RAGS wisely does not care to make any pronouncements in the realm of
strict syntax with it plethora of theories and disputes. Here I must confess to have taken
a garden path in reading the original chapter (9), since I take an ‘abstract’ representation
to mean one that would fully cover the meaning being conveyed, but state the meaning in
term of (in this case linguistic) categories (concepts) that underspecify the ultimate set of
choices. Instead, the only sense I could make out of the examples given there of abstract
features structures was that they were comprised of concrete syntactic stuff that just
happened to be incomplete. I can not locate these examples in the revised report, so
perhaps a different conception is being taken now.

The compositional grammar that drives the assembly of Text Structure13 works in
terms of categories (expressive types) that are for us a paradigm example of an abstract
syntactic structure. The essential features of syntactic structure are retained (head,
argument, adjunct) but the details (case assignment, ordering, grammatical categories per
se) are omitted. It is essentially underspecified with respect to the eventual syntactic
structure in that a great many additional choices remain to be made. In particular the list
of ‘items omitted’ from the bottom of page 46 all remain to be decided (or selected among
or simply instantiated as the case may be).

Could we emit a Text Structure following the RAGS DTD?14 The answer is a
qualified no unless we hijacked the interpretation of the terms in the DTD to our own
purposes.

For one, the leaves of Text Structure as we intend to implement it are not words, per
se, but pointers to a particular syntactic schema (roughly a tree family) from among the
set of such schema that are part of the representation of the a unit’s category in the
domain model. A mapping structure that accompanies the schema will populate and
particularize the schema to the unit when it is read out of Text Structure and into a
dependency tree of lexicalized elementary trees, and it is within these lexicalized trees that
the lexemes live. All of this is reference knowledge referenced by pointers; it would take
considerable effort to render it exportable.

If we figured out a way to get around that, we could certainly emit the structure of
the Text Structure dependency tree by taking the head, adjunct, etc. annotations on the
links, but since we support more specific kinds of elements than the RAGS DTD, we
would need to publish an extension to it if the export was not to lose any information.

13 So far this grammar has been implicit in the code that does the assembly. We expect to make it explicit

over the course of the next year or so.
14 Note that it would only make sense to do this sentence by sentence as each successive planning unit is

completed, since down stream processes should have the same sort of incremental access to context that
we do. To emit the Text Structure of a whole paragraph as one expression would tend to imply that it
was a representation that could be processed starting at any point one choose, which would be contrary
to our intent.

15

More fundamental is the question ‘would anyone want to get an export of an
instance of Text Structure’ – is there a syntactic realization component with a close
enough fit to its assumptions about what information is fixed at in its representation and
what left un(der)-determined that it could make use of it? Certainly it would be useless to
a system like Penman since the two make completely different assumptions here. An
obvious candidate would be another surface realizer that uses a TAG grammar like we do
(Mumble-86). Such a realizer would already have a body of elementary trees at its
disposal, and we can see how a set of ids could be worked out to establish the
correspondences between its trees and our own. Exposing the mapping structures that
populate tree schema to arrive at the lexicalized trees actually used in the realizer would
take more work but should be doable.

Note that we could certainly and relatively trivially export the lspecs that are read
out of the Text Structure to a TAG-based realizer since they are just a variation on the
dependency trees it would use itself. This could lead to some rather interesting
experiments depending on what kinds of knowledge is brought to bear within the realizer.
If it simply linearizes the tree then all we could look at would be matters like efficiency. If
it does more so much the better. In our case we know that the things that we will want to
handle after the Text Structure has been established are the impact of the information
structure (e.g. the use of topic-shift indicating constructions; heuristics for doing this were
developed with Genaro), and adherence to the fine-grained textual structure of the target
domain (mostly its choice of how arrange the internal structure of phrases and choices of
connectives: “first quarter earnings” vs. “earnings for the first quarter”; this work is just
starting).

References

Barwise, Jon & John Perry (1983) Situations and Attitudes, MIT Press, Cambridge,
Massachusetts.

Conklin, E. Jeffery (1983) Data-Driven Indelible Planning of Discourse Generation
Using Salience, Ph.D. Thesis, Department of Computer and Information Science,
University of Massachusetts at Amherst, May, 1983; available as COINS Technical
Report 83-13.

_____, Ehrlich, Kate & McDonald, David (1983) “An Empirical Investigation of Visual
Salience and its Role in Text Generation” in Cognition and Brain Theory, 6(2) Spring
1983.

_____ & McDonald, David (1982) “Salience: the key to the selection problem in natural
language generation”, Proceedings of the ACL, University of Toronto, June 16-18,
1982, pp. 129-135.

Devlin Keith (1991) Logic and information, Cambridge University Press
Kempen, Gerard & Eduard Hoenkamp (1987) “An incremental procedural grammar for

sentence formulation, Cogntive Science, 11, pp. 201-258.
Marcus, Mitch (1980) A Theory of Syntactic Recognition for Natural Language, MIT

Press.

16

McDonald, David (1980) Natural Language Production as a Process of Decision-
making under Constraints, Ph.D. Dissertation, MIT Artificial Intelligence
Laboratory, August 1980.

(1984) “Description Directed Control:, Computers and Mathematics 9(1); Reprinted in
Grosz et. al (eds.) Readings in Natural Language Processing, Morgan Kaufman
Publishers, Los Altos California, 1986, pp. 519-538.

_____ (1994) "Reversible NLP by Linking the Grammar to the Knowledge Base", in
Strzalkowski (ed), Reversible Grammar in Natural Language Processing, Kluwer
Academic, pp. 257-291, 1994.

_____ (in press) “Issues in the comprehension of real texts: the deign of Krisp”, to
appear in volume edited by Wojca and Shapiro, MIT Press.

_____, Meteer, Marie & Pustejovsky, James (1987) “Factors Contributing to Efficiency
in Natural Language Generation”, in G. Kempen (ed.), Natural Language
Generation, Martinus Nijoff Publishers, Dordrecht, pp. 159-182.

Meteer, Marie (1982) Expressibility and the Problem of Efficient Text Planning,
Pinter, London.

_____, David McDonald, Scott Anderson, David Forster, Linda Gay, Allison Huettner
(1987) “Mumble-89: Design and Implementation, UMass Technical Report 87-87,
173 pgs.

Parma, Cesare C., Hanson, Allan R., and Riseman, Edward M. (1980) “Experiments in
Schema-Driven Interpretation of a Natural Scene”, in J.C. Simon & R.M. Haralick
(Eds.) Digital Image Processing, Reidel Publishing Co. Dordrecht, Holland, pp. 303-
334.

